사이클로이드 길이 구하기(선적분)

 

1. 사이클로이드?

사이클로이드라는 곡선을 아는가?

원에서 한 점을 찍고, 원이 한바퀴 구르는 동안 그 점의 궤적을 따라서 그리면 아주 독특한 곡선이 하나 만들어지는데 이를 사이클로이드라고 한다.

https://www.desmos.com/calculator/v3ouxovbkf?lang=ko

 

Cycloid

 

www.desmos.com

위 사이트에 접속하여 왼쪽 위의 a 부분을 잡고 슬라이드 해보면 원이 굴러가면서 만드는 자취란 것을 알 수 있다.

참고로 위 그래프에서 cycloid는 파란선이다.

사이클로이드는 최속강하이론(다른말로 공이 가장 빨리 내려오는 곡선)에 활용 되기도 하는데, 이 특이하고 신기한 성질은 다음에 알아보도록하고..

 

2. 사이클로이드 곡선 길이 구하기!

이 독특한 곡선의 길이를 구할 수 없을까?

원은 $ 2 \pi r $이지 않은가?

한번 구해보자!

 

2-1. 선적분

길이를 구하는 적분을 '선적분'이라고도 하는데, 원리는 간단하다.

아주 미소한 양의 증분 x와 y을 피타고라스 정리 써서 직선 거리를 구해내고, 이를 쭉~ 끝까지 적분해내는것이다.

그럼 결국 미소하게 변하는 x와 y를 따라서 어떤 아주아주아주 미세한 직선이 만들어질테고, 이 아주 미소한 직선을 다시 모았으니 곡선의 길이가 되겠다.

그러면 이 아주 미소한 x와 y는 어떻게 구하냐면.. 특정 식을 x에 대해서 미분하고 y에 대해서 미분하면 아주 미소한 x의 증분과 y의 증분이 나올 것이고, 이를 피타고라스 정리로 모으면 아주 미소한 직선이 하나 구해질 것이다. 식으로 쓰면

$ \sqrt{(dx)^2+(dy)^2} $

그리고 이것을 모으면 되는데,

$ \int \sqrt{(dx)^2+(dy)^2} $

아뿔싸! 적분은 '아주 미소한 어떤 것'을 '모은다'로 정의 되기 때문에, $ \int $과 'd어쩌구'가 세트로 나와야한다.

따라서, 우리는 가장 간단하게 'x에 대해서 모을거야' 라고 정의를 해주기 위해 dx를 원 식에서 뽑아내면

$ \int \sqrt{\left(\frac{dx}{dx}\right)^2+\left(\frac{dy}{dx}\right)^2} dx $

$ \int \sqrt{1+\left(\frac{dy}{dx}\right)^2} dx $

짜잔, 적분식 완성이다.

심지어 이 식이 매개변수로 나타나는 식이라면, 매개변수를 통한 미분으로도 정의할 수 있다.

여기서는 '미소한 x와 미소한 y를 미소한 매개변수로 나타냈을 때, 얘를 모을께!'니까

$ \int \sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2} dt $

로 정의할 수 있겠다.

2-2. 매개변수 표현법

자, 이제 선의 길이를 구할 수있는 '도구'는 찾아내고 정의를 마쳤는데... 정작 이 사이클로이드의 한 점을 어떻게 x와 y로 표현할 수 있을 것인가!?

가장 쉬운 방법은 원이 어떤 각도 t만큼 돌아갔을 때 그 각도에 대해서 x와 y가 정의가 되므로 이를 이용하여 매개변수로 나타낼 수 있겠다!

 

출처: 나무위키


자, 가장 쉬운 y부터 보자, y는 원이 t만큼 돌아갔을 때(위 그림에서 $ \theta $), 반지름 r에 대해서 $ r - r cos t $만큼 움직인 것을 알 수 있겠는가?(위 그림에서 원이 $ \theta $만큼 돌아갔을 때 $ \overline{CI} -  \overline{CK} $가 y의 위치임을 알 수 있다. 이를 $ \overline{CI} = r,\ \overline{CK} = r cos \theta $로 치환하면 바로 식이 나온다)

 

그럼 x는? 원이 t만큼 돌아갔을 때 원의 중심이 x축으로 이동한 거리는, 그 호의 길이와 같다. 왜냐고? 바닥에 원 둘레를 딱 붙이고 돌아갔을테니까!(위 그림에서 $ \overline{OI} = \overset{\mmlToken{mo}{⏜}}{\rm PI} $)

그러면 원의 중심은 $ r t $(위 그림에서 $ \overset{\mmlToken{mo}{⏜}}{\rm PI} = \overline{OI} $)만큼 움직였을 테고, 여기서 x는 $ r sin t $(위 그림에서 $ \overline{PK} $)만큼 원의 중심보다 뒤에 있을 테니 $ r t - r sin t $가 되겠다.


다시 쓰면

$ x = r t - r sin t = r(t-sin t) $
$ y = r - r cos t = r(1-cos t) $

자, 이렇게 x와 y좌표를 나타낼 수 있는 관계식도 찾았다! 그렇다면 이제 바로 선적분 들어가보자

 

2-3. 매개변수로 표현된 선적분 풀기!

$ dx = r(1-cos t) dt \Leftrightarrow \frac{dx}{dt} = r(1-cos t) $
$ dy = r sin t dt \Leftrightarrow \frac{dy}{dt} = r sin t $

$ \int \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2} dt $
$ \int \sqrt{(r(1-cos t))^2+(r sin t)^2} dt $

근데 t가 0에서부터 $ 2 \pi $ 즉, 한바퀴 굴러갈때 거리를 잴거니까 적분의 위끝, 아래끝은 각각 0과 $ 2\pi $다.

$ \int_{0}^{2\pi} \sqrt{r^2((1-cos t)^2+(sin t)^2)} dt $
$ \int_{0}^{2\pi} r \sqrt{((1-cos t)^2+(sin t)^2)} dt $
$ r \int_{0}^{2\pi} \sqrt{((1-cos t)^2+(sin t)^2)} dt $

$ r \int_{0}^{2\pi} \sqrt{1-2cos t+(cos t)^2+(sin t)^2} dt $

$ r \int_{0}^{2\pi} \sqrt{1-2cos t+1} dt \leftarrow cos^2 x + sin^2 x = 1 $
$ r \int_{0}^{2\pi} \sqrt{2-2cos t} dt $
$ r \int_{0}^{2\pi} \sqrt{2(1-cos t)} dt $

$ r \int_{0}^{2\pi} \sqrt{2(1-(1-2(sin \frac{t}{2})^2)} dt \leftarrow cos(\frac{t}{2}+\frac{t}{2}) = cos^2 \frac{t}{2} - sin^2 \frac{t}{2} = 1 - 2sin^2 \frac{t}{2} $

$ r \int_{0}^{2\pi} \sqrt{2(2(sin \frac{t}{2})^2)} dt $

$ r \int_{0}^{2\pi} \sqrt{4(sin \frac{t}{2})^2} dt $

$ r \int_{0}^{2\pi} 2\sqrt{(sin \frac{t}{2})^2} dt $
$ 2r \int_{0}^{2\pi} \sqrt{(sin \frac{t}{2})^2} dt $
$ 2r \int_{0}^{2\pi} sin \frac{t}{2} dt $

$ 2r \left(-2 cos \frac{t}{2}\right]_{0}^{2\pi} $
$ 2r (-2 (-1 - 1)) $
$ 8r $

3. 결론

즉, 사이클로이드의 길이반지름의 8배, 지름의 4배 되겠다!

요새 외장하드를 사용하는데 처음 켜지는데 오래걸리고 자꾸 '매개변수가 틀립니다'라는 오류가 나서 찾아보니 전부 데이터 복구업체 광고들 뿐...

 

정말 심각한 상황이면 데이터 복구업체를 이용해야 하지만, 일단 집에서 할 수 있는 것은 해보아야겠다는 생각에 cmd를 켜 보았습니다.

 

실행방법은 윈도우키+R 이후 cmd입력 혹은 요새는 시작 버튼 누른 뒤 바로 키보드로 cmd 입력해도 검색해서 찾아주니까 쉽게 실행하실 수 있습니다.

 

그 뒤 인식이 애매하게 되는 드라이버 명(F:, G: 등)을 입력하면 만약 문제가 있을 경우 무슨 문제가 발생했다고 알려줍니다.

 

이후 chkdsk/f [드라이버 명]을 입력하면 알아서 처리가 됩니다.

 

시간은 조금 소요되고, 만약 컴퓨터가 완전히 제대로 인식하고 있다면 '다른 프로세스가 사용중인데 볼륨을 떼어낼까요?' 같은 질문이 들어옵니다.

 

이 메시지가 나온다면 제대로 인식이 되고 있는지 한번 더 확인해보시고, 그래도 안되면 떼어내서 검사하기에 yes 해주시면 됩니다.

+ Recent posts