0에서 1사이의 x^x(x의 x승) 적분 값 계산(integral from 0 to 1 x to the power x dx)

1. Gamma function(감마함수)를 통하여 gamma(n+1)=n! 증명

  https://omnil.tistory.com/172에 증명 되어 있음

2. $ e^x $의 매클로린 급수(Maclaurin series)를 구하기

  매클로린 급수의 일반항

    $ p(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n $

  $ e^x $는 모든 미분 차수에 대하여 그대로 $ e^x $이며, $ x=0 $일 때 항상 1값을 갖는다.

  따라서, $ e^x $를 매클로린 급수로 전개하면

    $ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} $

3. $ x^x $를 변환하기

  $ \int_0^1 x^x dx $

  $ = \int_0^1 e^{x\, ln\, x} dx \leftarrow \because x $ 는 $ e^{ln\, x} $와 같으므로, $ x^x = e^{x\, ln\, x} $

  $ = \int_0^1 \sum_{n=0}^{\infty} \frac{(x\, ln\, x)^n}{n!} dx \leftarrow \because e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} $ 이므로

  $ = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{1} (x\, ln\, x)^n dx $

4. $ -ln\, x $를 $ t $로 치환하기

  $ -ln\, x = t $

  $ ln\, x = -t $

  $ x = e^{-t} $

  $ dx = -e^{-t}dt $

  $ x = 1 \rightarrow t = 0 $

  $ x = 0 \rightarrow t = \infty $

  $ \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{1} (x\, ln\, x)^n dx $

  $ = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\infty}^{0} e^{-nt}(-t)^n(-e^{-t}) dt $

  $ = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{\infty} e^{-nt}(-t)^n(e^{-t}) dt $

  $ = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{\infty} e^{-t(n+1)}(-t)^n dt $

  $ = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_{0}^{\infty} e^{-t(n+1)}t^n dt $

5. $ t(n+1) $을 $ p $로 다시 치환해주기

  $ t(n+1) = p $

  $ t = \frac{p}{n+1} $

  $ dt = \frac{1}{n+1} dp $

  $ \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_{0}^{\infty} e^{-t(n+1)}t^n dt $

  $ = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_{0}^{\infty} e^{-p} \frac{p^n}{(n+1)^n} \frac{1}{n+1} dp $

  $ = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_{0}^{\infty} e^{-p} \frac{p^n}{(n+1)^{(n+1)}} dp $

  $ = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{1}{(n+1)^{(n+1)}} \int_{0}^{\infty} e^{-p} p^n dp $

  $ = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{1}{(n+1)^{(n+1)}} n! \leftarrow \because \int_{0}^{\infty}e^{-x}x^{n} dx = n! $

  $ = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^{(n+1)}} \leftarrow \because n!$ 약분

  $ = 1 - \frac{1}{2^2} + \frac{1}{3^3} - ... $

6. 결과

  $ \simeq 0.783431$

+ Recent posts