직선 두개로 뢸로 삼각형(Reuleaux triangle) 4등분 하기[그러나 이제 적분이 없는]

[나야 기하학]

말머리-

어제 뢸로 삼각형을 해체했다는 기쁨도 잠시... 어제 포스팅 쓰면서 적분 변환하느라 아주 길고 긴 latex을 작성했던 것이 떠올랐다.

근데 적분 말고, 전에 원을 나눌때도 기하학으로 하면 더 편했던 것 처럼 기하학으로는 안될까..?

싶었는데... 고민해보니 되긴하네!? 해서 시작한 포스팅이네요

하다보니 항이 많고, 원 변수를 모두 포함해서 계산하자면 아주 복잡해지는데 이를 적당히 간단한 변수로 치환치환 해가며 정리하면 금새 수식이 정리되는게, 정말 복잡한 적분 없이 바로 결과식에 도달하는게 재미지네요!

 

수식세우기-

1] 도형 나누기

이전 포스팅인 >>적분으로 뢸로삼각형 4등분하기<<를 기본으로 보시면 좋습니다.

기본 뼈대는 같습니다. 뢸로삼각형 넓이의 $ \frac{1}{4} $을 구하는 거지요.

그러나 기하학을 곁들여서 생각해보면 이번에는 뢸로삼각형을 아래와 같이 나눠볼 수 있을 것 같네요!

예 색칠을 좀 해봤습니다!

저 자주색 영역이(빗금까지 포함해서) 부채꼴입니다. 뢸로 삼각형의 정의가 한 꼭지점을 원점으로하여 다른 두 꼭지점을 연결하는 원의 일부분을 그리는 것이었으니 당연히 한 꼭지점을 원점으로하는 자주색 영역은 부채꼴이 됩니다.

다만 여기서는 임의의 각 $ \theta $만큼의 부채꼴인거죠.

자 그러면 이제 뢸로삼각형의 영역의 $ \frac{1}{4} $의 넓이를 저 도형들로 살펴보죠!

먼저 자주색 부채꼴 넓이에서 빨간색 삼각형 넓이를 빼고 파란색 삼각형 넓이를 더하고 주황색 활꼴의 절반 넓이를 더하면 뢸로 삼각형의 1/4이 되겠네요!

 

똑같이 뢸로삼각형의 내부 정삼각형의 밑변을 y=0에 두고, 그 높이를 a라고 칭하겠습니다.

그리고 a높이에서 x위치는 이전 포스팅과 동일하게 원의 방정식으로 놓겠습니다.

그러면,

$ 자주-빨강+파랑+주황 = \frac{1}{4} 뢸로삼각형 전체 넓이 $

으로 볼 수 있고, 이거를 좀 더 있어보이게 표현해보면 아래와 같습니다.

$ A_{Sector}-A_{SectorTriangle}+A_{UpperTriangle}+\frac{1}{2}A_{Segment} = \frac{1}{4}A_{ReuleauxTriangle} $

자, 이제 각각의 넓이를 구하러 출동해보시죠

 

2] 각각의 넓이 구하기

차례대로 하나씩 넓이를 구해보죠

일단 자주색 부채꼴입니다.

임의의 각 $ \theta $로 계산하면 부채꼴의 넓이는

$ A_{Sector} = \frac{1}{2}d^2\theta $

이렇게 되겠죠?

다음은 빨간 삼각형입니다.

삼각형의 넓이는 밑변*높이*절반 입니다. 여기서 밑변은 폭의 절반이지만, 높이는 일반각 $ \theta $로 정의되기때문에 밑변에 $ tan\theta $를 곱한 것으로 알 수 있죠. 따라서

$ A_{SectorTriangle} = \frac{1}{2}*\frac{1}{2}d*\frac{1}{2}dtan\theta $

이 됩니다.

파란 삼각형을 보죠

빨간 삼각형과 비슷하게 밑변*높이*절반을 가져가려하나, 밑변에 해당하는 길이가 변수 a에 의해서 계속 변화합니다. 따라서 밑변은 변수 a에 의해 길이가 결정되는데, 이 법칙을 나타낸게 원의 방정식을 정리한 함수죠. 자세한 내용은 이전 포스팅에 있으니 여기서는 빠르게 수식을 세워보도록 하겠습니다.

그리고 이 파란 삼각형에서도 높이는 밑변에 tan값을 곱한 값이 되는데, 여기서 일반각은 평행한 두 직선 사이 엇각의 관계가 되므로(정확히는 내엇각(alternate interior angle)) 똑같이 $ \theta $가 됩니다.

수식으로 세워보면

$ A_{UpperTriangle} = \frac{1}{2}*(\sqrt{d^2-a^2}-\frac{d}{2})*(\sqrt{d^2-a^2}-\frac{d}{2})tan\theta $

이 됩니다.

대망의 활꼴의 절반인 주황색이 나왔습니다. 

전체 활꼴의 넓이는 아래와 같고

$ A_{Segment} = \frac{1}{2}d^2\frac{\pi}{3}-\frac{\sqrt{3}}{4}d^2 $

이것의 절반이 주황색의 넓이죠?

전체 수식에서 나중에 1/2을 해줄테니 수식은 여기까지 세우는 걸로 하죠

마지막 뢸로 삼각형의 넓이 입니다.

$ A_{ReuleauxTriangle} = \frac{3}{2}d^2\frac{\pi}{3}-\frac{\sqrt{3}}{2}d^2 $

부채꼴넓이*3-정삼각형넓이*2 해주면 나옵니다.

이제 각각의 넓이를 다 구했으니 다 합칠까요?

아뇨... 각각만 봐도 너무 복잡한데 지금 다 합쳐버리면 길이가 너무 길어져요...

그러니 동일하게 각각 다 수식을 정리해서 마지막에 합쳐보죠!

 

3] 수식 정리하기

$ \frac{a}{d} = s $ 로 놓겠습니다. 그럼 $ a = ds $도 성립하겠죠?

그리고 sin함수의 정의는 임의의 각 $ \theta $에 대해 그 직각삼각형의 $ \frac{높이}{빗변} $로 정의됩니다. 따라서
$ sin\theta = \frac{a}{d} $ 가 되겠네요. 그리고 $ \frac{a}{d} = s $니까, 삼단논법으로 $ sin\theta = s $입니다.

sin을 정의했으니 다른 삼각함수들도 정의해보죠. 삼각함수들은 하나가 정해지면 다른것들로도 다 변환이 된답니다.
$ cos\theta = \sqrt{1-sin^2\theta} = \sqrt{1-s^2} $
$ tan\theta = \frac{sin\theta}{cos\theta} = \frac{s}{\sqrt{1-s^2}} $

자, 이제 간단하게 할 준비는 다 끝났습니다. 수식정리하러가죠

부채꼴은 다음과 같이 정리될겁니다. $ sin\theta=s $면 $ \theta=arcsin\ s $겠죠?

$ A_{Sector} = \frac{1}{2}d^2\theta $
$ A_{Sector} = \frac{1}{2}d^2arcsin\ s $

빨간삼각형

$ A_{SectorTriangle} = \frac{1}{2}*\frac{1}{2}d*\frac{1}{2}dtan\theta $
$ A_{SectorTriangle} = \frac{d^2s}{8\sqrt{1-s^2}} $

파란삼각형

$ A_{UpperTriangle} = \frac{1}{2}*(\sqrt{d^2-a^2}-\frac{d}{2})*(\sqrt{d^2-a^2}-\frac{d}{2})tan\theta $
$ A_{UpperTriangle} = \frac{d^2}{2}(\sqrt{1-s^2}-\frac{1}{2})^2\frac{s}{\sqrt{1-s^2}} $

요렇게 정리가 되겠네요!

활꼴뢸로 삼각형도 각각 절반, 사등분 해준 결과를 먼저 써서 정리하죠

$ \frac{1}{2}A_{Segment} = \frac{d^2}{4}(\frac{\pi}{3}-\frac{\sqrt{3}}{2}) $
$ \frac{1}{4}A_{ReuleauxTriangle} = \frac{d^2}{8}(\pi-\sqrt{3}) $

이 두개는 상수항이므로 먼저 계산을 통해 정리해보도록 하겠습니다.

$ A_{Sector}-A_{SectorTriangle}+A_{UpperTriangle}+\frac{1}{2}A_{Segment} = \frac{1}{4}A_{ReuleauxTriangle} $

이게 전체식이구요, 상수항을 이항해서

$ A_{Sector}-A_{SectorTriangle}+A_{UpperTriangle} = \frac{1}{4}A_{ReuleauxTriangle}-\frac{1}{2}A_{Segment} $

요렇게 놓은뒤에 위에서 정리한 식을 넣고 다시 정리하면

$ A_{Sector}-A_{SectorTriangle}+A_{UpperTriangle} = \frac{d^2\pi}{24} $

요렇게 상수항이 깔끔해집니다.

이제 나머지 식들을 대입해보죠

$ \frac{1}{2}d^2arcsin\ s-\frac{d^2s}{8\sqrt{1-s^2}}+\frac{d^2}{2}(\sqrt{1-s^2}-\frac{1}{2})^2\frac{s}{\sqrt{1-s^2}} = \frac{d^2\pi}{24} $

길어졌죠? 일단 공통되는 변수를 양변 나눠줘서 일단 최대한 간단하게 해봅시다.

$ \frac{d^2}{2} $로 양변 나누면(=$ \frac{2}{d^2} $로 양변 곱하면)

$ arcsin\ s-\frac{s}{4\sqrt{1-s^2}}+(\sqrt{1-s^2}-\frac{1}{2})^2\frac{s}{\sqrt{1-s^2}} = \frac{\pi}{12} $

훨씬 간단해졌죠?

그래도 루트가 있으니까 뭔가 보기 불편합니다. 더 줄여보죠. $ u = \sqrt{1-s^2} $ 이렇게 루트를 치환해보겠습니다.

$ arcsin\ s-\frac{s}{4u}+(u-\frac{1}{2})^2\frac{s}{u} = \frac{\pi}{12} $

보기 훨씬 편하죠?

이제 세번째 항의 제곱을 풀어봅시다. 아주 수식이 간단하니 그 옆에 있는 곱셈으로 연결된 부분까지 같이 곱해주죠. 이렇게 간단하게 놓은 상황에서 풀면 간단하지만, 처음부터 풀어버리려면 아주 복잡했겠죠?

$ arcsin\ s-\frac{s}{4u}+(su-s+\frac{s}{4u}) = \frac{\pi}{12} $

보면 $ \frac{s}{4u} $가 덧셈 뺄셈으로 있네요? 소거해주면

$ arcsin\ s+su-s = \frac{\pi}{12} $

와우 엄청 간단한 식이 나왔네요

이제 줄이고 줄인 식이니까, 다시 치환한 변수들을 원래 변수들로 돌려주죠.

일단 u를 다시 s로,

$ arcsin\ s+s\sqrt{1-s^2}-s = \frac{\pi}{12} $

그리고 s를 다시 a와 d로 바꿔줍니다.

$ arcsin \frac{a}{d}+\frac{a}{d}\sqrt{1-\left(\frac{a}{d}\right)^2}-\frac{a}{d} = \frac{\pi}{12} $

그러면!!

바로 적분으로 풀었던 식과 완전 동일한 식이 짜잔 하고 나타난답니다.

 

결론-

조금 번거롭지만 복잡한 적분 없이도 풀 수 있었던 것이었습니다!

사이클로이드 길이 구하기(선적분)

 

1. 사이클로이드?

사이클로이드라는 곡선을 아는가?

원에서 한 점을 찍고, 원이 한바퀴 구르는 동안 그 점의 궤적을 따라서 그리면 아주 독특한 곡선이 하나 만들어지는데 이를 사이클로이드라고 한다.

https://www.desmos.com/calculator/v3ouxovbkf?lang=ko

 

Cycloid

 

www.desmos.com

위 사이트에 접속하여 왼쪽 위의 a 부분을 잡고 슬라이드 해보면 원이 굴러가면서 만드는 자취란 것을 알 수 있다.

참고로 위 그래프에서 cycloid는 파란선이다.

사이클로이드는 최속강하이론(다른말로 공이 가장 빨리 내려오는 곡선)에 활용 되기도 하는데, 이 특이하고 신기한 성질은 다음에 알아보도록하고..

 

2. 사이클로이드 곡선 길이 구하기!

이 독특한 곡선의 길이를 구할 수 없을까?

원은 $ 2 \pi r $이지 않은가?

한번 구해보자!

 

2-1. 선적분

길이를 구하는 적분을 '선적분'이라고도 하는데, 원리는 간단하다.

아주 미소한 양의 증분 x와 y을 피타고라스 정리 써서 직선 거리를 구해내고, 이를 쭉~ 끝까지 적분해내는것이다.

그럼 결국 미소하게 변하는 x와 y를 따라서 어떤 아주아주아주 미세한 직선이 만들어질테고, 이 아주 미소한 직선을 다시 모았으니 곡선의 길이가 되겠다.

그러면 이 아주 미소한 x와 y는 어떻게 구하냐면.. 특정 식을 x에 대해서 미분하고 y에 대해서 미분하면 아주 미소한 x의 증분과 y의 증분이 나올 것이고, 이를 피타고라스 정리로 모으면 아주 미소한 직선이 하나 구해질 것이다. 식으로 쓰면

$ \sqrt{(dx)^2+(dy)^2} $

그리고 이것을 모으면 되는데,

$ \int \sqrt{(dx)^2+(dy)^2} $

아뿔싸! 적분은 '아주 미소한 어떤 것'을 '모은다'로 정의 되기 때문에, $ \int $과 'd어쩌구'가 세트로 나와야한다.

따라서, 우리는 가장 간단하게 'x에 대해서 모을거야' 라고 정의를 해주기 위해 dx를 원 식에서 뽑아내면

$ \int \sqrt{\left(\frac{dx}{dx}\right)^2+\left(\frac{dy}{dx}\right)^2} dx $

$ \int \sqrt{1+\left(\frac{dy}{dx}\right)^2} dx $

짜잔, 적분식 완성이다.

심지어 이 식이 매개변수로 나타나는 식이라면, 매개변수를 통한 미분으로도 정의할 수 있다.

여기서는 '미소한 x와 미소한 y를 미소한 매개변수로 나타냈을 때, 얘를 모을께!'니까

$ \int \sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2} dt $

로 정의할 수 있겠다.

2-2. 매개변수 표현법

자, 이제 선의 길이를 구할 수있는 '도구'는 찾아내고 정의를 마쳤는데... 정작 이 사이클로이드의 한 점을 어떻게 x와 y로 표현할 수 있을 것인가!?

가장 쉬운 방법은 원이 어떤 각도 t만큼 돌아갔을 때 그 각도에 대해서 x와 y가 정의가 되므로 이를 이용하여 매개변수로 나타낼 수 있겠다!

 

출처: 나무위키


자, 가장 쉬운 y부터 보자, y는 원이 t만큼 돌아갔을 때(위 그림에서 $ \theta $), 반지름 r에 대해서 $ r - r cos t $만큼 움직인 것을 알 수 있겠는가?(위 그림에서 원이 $ \theta $만큼 돌아갔을 때 $ \overline{CI} -  \overline{CK} $가 y의 위치임을 알 수 있다. 이를 $ \overline{CI} = r,\ \overline{CK} = r cos \theta $로 치환하면 바로 식이 나온다)

 

그럼 x는? 원이 t만큼 돌아갔을 때 원의 중심이 x축으로 이동한 거리는, 그 호의 길이와 같다. 왜냐고? 바닥에 원 둘레를 딱 붙이고 돌아갔을테니까!(위 그림에서 $ \overline{OI} = \overset{\mmlToken{mo}{⏜}}{\rm PI} $)

그러면 원의 중심은 $ r t $(위 그림에서 $ \overset{\mmlToken{mo}{⏜}}{\rm PI} = \overline{OI} $)만큼 움직였을 테고, 여기서 x는 $ r sin t $(위 그림에서 $ \overline{PK} $)만큼 원의 중심보다 뒤에 있을 테니 $ r t - r sin t $가 되겠다.


다시 쓰면

$ x = r t - r sin t = r(t-sin t) $
$ y = r - r cos t = r(1-cos t) $

자, 이렇게 x와 y좌표를 나타낼 수 있는 관계식도 찾았다! 그렇다면 이제 바로 선적분 들어가보자

 

2-3. 매개변수로 표현된 선적분 풀기!

$ dx = r(1-cos t) dt \Leftrightarrow \frac{dx}{dt} = r(1-cos t) $
$ dy = r sin t dt \Leftrightarrow \frac{dy}{dt} = r sin t $

$ \int \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2} dt $
$ \int \sqrt{(r(1-cos t))^2+(r sin t)^2} dt $

근데 t가 0에서부터 $ 2 \pi $ 즉, 한바퀴 굴러갈때 거리를 잴거니까 적분의 위끝, 아래끝은 각각 0과 $ 2\pi $다.

$ \int_{0}^{2\pi} \sqrt{r^2((1-cos t)^2+(sin t)^2)} dt $
$ \int_{0}^{2\pi} r \sqrt{((1-cos t)^2+(sin t)^2)} dt $
$ r \int_{0}^{2\pi} \sqrt{((1-cos t)^2+(sin t)^2)} dt $

$ r \int_{0}^{2\pi} \sqrt{1-2cos t+(cos t)^2+(sin t)^2} dt $

$ r \int_{0}^{2\pi} \sqrt{1-2cos t+1} dt \leftarrow cos^2 x + sin^2 x = 1 $
$ r \int_{0}^{2\pi} \sqrt{2-2cos t} dt $
$ r \int_{0}^{2\pi} \sqrt{2(1-cos t)} dt $

$ r \int_{0}^{2\pi} \sqrt{2(1-(1-2(sin \frac{t}{2})^2)} dt \leftarrow cos(\frac{t}{2}+\frac{t}{2}) = cos^2 \frac{t}{2} - sin^2 \frac{t}{2} = 1 - 2sin^2 \frac{t}{2} $

$ r \int_{0}^{2\pi} \sqrt{2(2(sin \frac{t}{2})^2)} dt $

$ r \int_{0}^{2\pi} \sqrt{4(sin \frac{t}{2})^2} dt $

$ r \int_{0}^{2\pi} 2\sqrt{(sin \frac{t}{2})^2} dt $
$ 2r \int_{0}^{2\pi} \sqrt{(sin \frac{t}{2})^2} dt $
$ 2r \int_{0}^{2\pi} sin \frac{t}{2} dt $

$ 2r \left(-2 cos \frac{t}{2}\right]_{0}^{2\pi} $
$ 2r (-2 (-1 - 1)) $
$ 8r $

3. 결론

즉, 사이클로이드의 길이반지름의 8배, 지름의 4배 되겠다!

직선 두개로 원을 삼등분하기

 

원을 삼등분하는 방법은 정말 여러가지가 있다.

일본에서는 챌린지까지 열릴정도라고하니 열기가 대단함을 알 수 있다.

그 중에는 실용적인 것도 있지만, 오로지 수학적 아름다움만을 위해 있는 것들도 있고... 하지만, 이번에 소개하려는 방식은 그 챌린지에 없지만, 실용적으로 쓸 수 있는 직선 두개로 원을 삼등분 하는 방식이다.

물론 수치가 완전히 딱 떨어지게는 나오지 않기 때문에 실전에서 사용하려면 어느정도 비슷한 근사치로 봐야하지만, 그래도 빠르게 직선만으로 3등분을 내기에는 적합하지 않나 싶다.

 

그래서 우리의 목표는

색칠한 세 면의 넓이가 모두 같으면 삼등분!

위와같이 원을 세로로 한번, 가로로 한번 잘라 면적이 동일하게 나오게 하는 것이다. 면적이 동일하면 3등분!

그렇지만, 따져보면 왼쪽의 두 부분은 위아래 대칭으로 한쪽 넓이만 계산하면 자동으로 반대편 넓이가 나오므로, 여기서 가장 중요한 포인트는 첫번째 세로로 자를 때 주황부분과 초록부분이 넓이가 같아지는지가 제일중요하게 된다.

그러면 어느 x점에서 잘라야 하는지가 중요해지고, 이것만 계산할 수 있으면 원을 직선 두개로 삼등분 할 수 있게 된다.

어느 x 지점에서 잘라야 원을 3등분 할 수 있을까?

자, 그러면 두 넓이가 같다는 식을 세워보자

음영처리된 부분의 넓이가 키포인트 입니다

음영처리된 부분의 넓이를 구하는게 키포인트인데, 일단 간단하게 음영처리된 부분의 넓이를 $ a $라고 하고 넓이구하는 식을 만들어 봅시다. 원은 단위원으로 반지름은 1입니다.

(노란부분) $ \frac{\pi}{4} + a = 2(\frac{\pi}{4} - a) $ (초록부분)

근데 식을 써보니 식이 a에 대해서 정리될 것 같습니다.

$ \frac{\pi}{4} + a = 2(\frac{\pi}{4} - a) $

$ 3a = \frac{\pi}{4} $

$ a = \frac{\pi}{12} $

즉, 전체 넓이를 구하는 식에서 음영처리된 넓이가 $ \frac{\pi}{12} $면 된다는 식으로 식이 더 간단해 졌군요.

그럼 이제 우리는 음영처리된 넓이만 구하면 되겠습니다.

 

1) 각도와 삼각함수로 구하기

이전 포스팅(링크)에서 구했던 방식인데, 여기서 x값으로 다시 나타내지 않고, 각도값 그대로 사용하여 푸는 방식입니다.

theta 놓는 방향에 주의하세요

원과 각도가 주어졌고, 위와 같은 모양의 넓이면, 호의 넓이+삼각형 넓이 해서 구할수 있으며, 이 식은

$ \frac{1}{2} \theta $ (호의 넓이) + $ \frac{1}{2} sin\theta \cdot cos\theta $ (삼각형의 넓이) [r=1 생략]

그러면 우리가 구하고자 했던 $ \frac{\pi}{12} $로 방정식을 놓으면

$ \frac{1}{2} \theta + \frac{1}{2} sin\theta \cdot cos\theta = \frac{\pi}{12} $

정리하면

$ \theta + sin\theta \cdot cos\theta = \frac{\pi}{6} $

가 됩니다. 전에도 말씀드렸다시피 삼각함수의 일반각 계산은 사람이 할 수 없으므로 울프람 알파(https://www.wolframalpha.com/)를 돌려줍니다.

[위 식을 그대로 긁어서 붙이면 울프람에서 인식을 못합니다. θ + sin θ ⋅ cos θ = π/6 이거를 붙여 넣어주세요]

그러면 결과가

$ \theta = 0.268133... $

으로 나옵니다.

그러나 이거는 각도 값일 뿐, 우리가 원하는 것은 x좌표이므로, 위의 그림에서 놓은 $ \theta $ 방향을 보면, $ sin \theta $가 x좌표임을 알 수 있습니다.

다시 $ sin \theta $에 0.268133값을 넣어서 울프람 알파를 돌리면

$ sin 0.268133 = 0.264932... = x $

이와 같은 값을 얻고, 이는 바로 x좌표입니다.

 

2) 부정적분으로 구하기

이전 포스팅(링크)에서 주야장천 구했던 식을 가지고 푸는 방법입니다.

물론 계산은 울프람 알파가 해줄겁니다.

먼저 방정식을 세웁니다.

$ \frac{1}{2} \cdot x \cdot \sqrt{1-x^{2}} + \frac{1}{2} \cdot arcsin \, x = \frac{\pi}{12} $

정리하여

$ x \cdot \sqrt{1-x^{2}} + arcsin \, x = \frac{\pi}{6} $

으로 만들고 울프람을 돌리겠습니다. 마찬가지로 위 식을 그대로 붙이면 울프람에서 인식 못하니 x ⋅ √ (1 − x^2) + arcsin x = π/6로 붙여넣어 주세요.

그러면 이번에는 한번에 x 값을 알려줍니다. 결과는 1)번과 같습니다.

 

결론

위의 계산으로 단위원의 원점에서 약 0.265만큼 떨어진 위치에서 세로로 한번, 나머지 부분에 가로로 한번 잘라주면 3등분이 된다는 사실을 알았네요!

좀 더 실용적으로 말해보자면 어떤 크기의 원이든, 원점에서 약 1/4 지점보다 조금 더 나가서 T자로 자르면 3분할이 된다고 볼 수 있겠습니다!

원넓이의 부정적분 구하기 - 2) 부정적분으로 구해보기

intetral root(1-x^2) dx

 

굉장히 오랜만에 다시 써보는 포스팅이네요.

저번 시간에 원 내부의 사다리꼴과 같은 도형의 넓이를 구하는 방법을 가장 기본적인 공식(부채꼴 공식+삼각형 공식)을 가지고 구해보았습니다.

원 내부의 하얀부분은 "활꼴의 절반"이라고 쉽게 설명이 가능한데, 그 반대편에 대한 용어는 따로 존재하지 않네요..

이번 시간에는 이것을 부정적분으로 x값을 가지고 바로 구하는 방법을 알아볼까 합니다.

저번에 각도 $\theta$를 부채꼴 부분으로 잡았는데, 이번에도 한번 이렇게 잡아서 수식을 전개해보려고 합니다.

부채꼴 부분이 $\theta$입니다.

일단 이렇게 특수한 상황에 가기 전에, 일반적으로 원의 넓이를 적분으로 어떻게 구하는지 다시 한번 살펴보도록하겠습니다.

 

자, 일단 원의 방정식은 $x^{2}+y^{2}=r^{2}$입니다. 저희는 $r$이 1인 단위원을 사용하기 때문에 식은 더욱 간단하게 $x^{2}+y^{2}=1$이 되겠네요.

이를 좀 더 보기 편하게 y에 대한 값으로 나타내면(x의 값에 따라 y값을 결정하는 방식) $y=\pm \sqrt{1-x^{2}}$으로 정리할 수 있습니다.

이 때 부호에 따라 양의 부호는 y축을 기준으로 0보다 위에 그려지는 반원을, 음의 부호는 아래쪽에 그려지는 반원을 의미합니다.

현재 저희는 위에 그려지는 반원 중에서도 1사분면 위의 사반원에 대해 구하려고 하고 있으므로, 이에 대한 적분 수식은 $\int \sqrt{1-x^2} \, dx$라고 볼 수 있습니다.

 

여기서 루트가 들어간 적분은 그냥 풀기에 너무 힘들기 때문에 x를 치환시켜 줄 것입니다.

예전에 고등학교 때 적분을 공부하면서 도대체 왜 치환하는지 의문을 가졌었는데, 실상은 치환해서 더 쉬운 형태로 만들어서 적분을 쉽게 만들기 위해서 하는 작업입니다 치환적분은!

 

루트를 없애줄 수 있으면서 적분 형태를 간단하게 해줄 수 있는 것이 무엇이 있나 한번 살펴보다보니, 언뜻 지나가는 공식이 있습니다.

$ sin^{2} \theta + cos^{2} \theta = 1 $이라는 공식이지요.(이 공식은 그냥 암기할 게 아니라, 너무 당연한 것을 표현한 것입니다. 아까 단위원의 방정식은 $x^{2}+y^{2}=1$이라고 했습니다. 이것은 원 위에서 무조건 성립하는 값입니다. 여기서 매개변수 표현법을 사용하면 $y=sin \theta, x=cos \theta$라고 했습니다. 즉, 단위원의 방정식에 매개변수 표현법을 사용하여 표현 방법만 x, y 변수가 아닌 $\theta$변수 로 바꿔준 것이 됩니다.)

이항해보면

$cos^{2} \theta =1-sin^{2} \theta$

제곱을 제거하면

$cos \theta = \sqrt{1-sin^{2} \theta}$

어디선가 많이 본 보양이지요?

즉, $x$를 $sin \theta$로 치환하면 자연스럽게 루트가 들어간 식이 정리되면서 적분이 가능한 형태로 바뀔 것 같습니다!

일단, $x$를 치환하면 $dx$도 같이 치환해 줘야 하므로 미분을 때려 봅시다.

$x=sin \theta$

$dx=cos \theta d\theta$

그럼 이렇게 준비된 x를 가지고 치환적분을 해보겠습니다.

$ \int \sqrt{1-x^{2}} dx $

$ \int \sqrt{1-sin^{2} \theta} cos \theta d\theta]_{x=sin \theta, dx=cos \theta d\theta} $

$ \int cos \theta \cdot cos \theta d\theta $

$ \int cos^{2} \theta \, d\theta $

여기서 다시 난관에 봉착합니다. $ cos^{2} \theta $를 적분하려면 많은 애로사항이 꽃핍니다.

일단 제곱을 떨어내야하는데, 어떻게 떨어내야할지 생각해봤더니... 배각공식을 역이용해서 떨어보겠습니다.

$ cos 2\theta \, = \, cos^{2} \theta - sin^{2} \theta $

참고로 배각공식은 삼각함수의 덧셈공식에서 온겁니다

$ cos (\alpha+\beta) = cos \alpha \cdot cos \beta - sin \alpha \cdot sin \beta $

자, 일단 $ cos^{2} \theta $를 $ cos 2\theta $로 바꿀 수 있는 실마리를 잡았는데, 뒤에 $ sin^{2} \theta $는 어떻게 없앨 수 있을까요?

여기서 삼각함수 무적의 공식 $ sin^{2} \theta + cos^{2} \theta = 1 $이 등장합니다.

$ sin^{2} \theta = 1 - cos^{2} \theta $로 만들고, 원 식에 대입하면

$ cos 2\theta = cos^{2} \theta - (1 - cos^{2} \theta) $

$ cos 2\theta = 2cos^{2} \theta - 1 $

우리는 $ cos^{2} \theta $를 바꿔야 하니 $ cos^{2} \theta $로 정리해보죠

$ cos^{2} \theta = \frac{cos 2\theta +1}{2} $

그럼 바로 대입하면

$ \int cos^{2} \theta \, d\theta $

$ \int \frac{cos 2\theta +1}{2} \, d\theta $

$ \frac{1}{2} (\int (cos 2\theta + 1) \, d\theta) $

$ \frac{1}{2} (\frac{1}{2}sin 2\theta + \theta) $ +C 생략

자, 드디어 적분을 완료해서 적분기호가 사라졌습니다.

그러나 $ sin 2\theta $는 뭔가 보기에 깔끔하지 않죠.. 똑같이 삼각함수 배각공식을 이용하여 단일 $ \theta $항으로 만들어줍시다.

$ sin 2\theta = 2 \cdot sin \theta \cdot cos\theta $

물론 이 배각공식도 덧셈공식에서 왔습니다.

$ sin (\alpha+\beta) = sin \alpha \cdot cos \beta + cos \alpha \cdot sin \beta $

따라서 원 식에 배각공식을 이용하여 풀어주면

$ \frac{1}{2} (\frac{1}{2}(2 \cdot sin \theta \cdot cos\theta) + \theta) $

$ \frac{1}{2} (sin \theta \cdot cos\theta + \theta) $

$ \frac{1}{2}sin \theta \cdot cos\theta + \frac{1}{2}\theta $

여기서

$ x = sin \theta $

$ \theta = arcsin x $

$ y = \sqrt{1-x^{2}} = cos \theta $

이므로, $ \theta $에 대한 식이 아닌, 원 x에 대한 식으로 바꿔주면

$ \frac{1}{2} \cdot x \cdot \sqrt{1-x^{2}} + \frac{1}{2} \cdot arcsin \, x $

이 나오고, 이는 이 전 포스팅의 결과 식과 완전히 같은 모양이 됩니다.

 

원넓이의 부정적분 구하기원넓이의 부정적분 구하기 - 1) 일반공식으로 구해보기

 

원넓이를 처음 배우는 것은 초등학교 때, $\pi$를 3.14 근사값으로 배우면서 공식 암기와 함께 시작한다.

이후 중학교 과정에서 수의 확장과 함께 무리수로 $\pi$를 배워 무리수가 들어간 공식으로 배우고, 고등학교에 이르러서는 적분을 통해 원의 넓이를 새삼스레 다시 구해본다.

결국 우리의 수학 교과과정은 원에 대해서 배우는 것이다 라고 말해도 과언이 아닐 정도이다.

 

여기서 고등학교에서 정적분으로 원의 넓이를 구할 때 기계적으로 치환, 공식대입, 정적분을 통해서 '아 그냥 그렇게 되는구나'라고 알고 넘어가는 사람들이 대다수 일 터.

이번에 뭔가 궁금증이 생겨서 다시 풀어보니, 예전엔 그냥 단순히 치환하고 공식을 대입해서 풀었던 여기에는 참 많은 이유들이 있다는 것을 알게되었다.

 

그리하여 부정적분을 통해서 왜 이렇게 치환하고 그것으로 어떻게 넓이를 구하는지 알아보고자 한다.

요런식으로 x가 0부터 0.5일때 원의 넓이를 구하는 방법을 알아보려고 한다.

 

물론 원은 사분원 넓이의 네배이니까 적분으로 원넓이 공식을 유도할 때 처럼, 반지름이 1인 단위원을 기준으로 하여 사분원의 넓이를 구하는 식으로 진행한다.

 

1] 일반식으로 원 넓이 구하기

부정적분으로 넘어가기 전에, 우리가 아는 일반 공식으로 $x$축에 대한 원의 넓이를 구할 수 있다.

딱 위의 그림에서와 같이 한번에 구하려면 왠지 적분을 써야 할 것 같지만,

호와 삼각형으로 나눠서 구한다면?

위 그림과 같이 부채꼴과 삼각형으로 나눠서 구한다면 쉽게 원의 부분 넓이를 구할 수 있다.

부채꼴의 넓이는 호도법으로 전체 각도($2\pi$(360도))에 대한 원 넓이 $\pi r^2$을 전체 각도에 대한 부분각도의 비 만큼 곱해주면( $\frac{\theta}{2\pi}$ ) 부채꼴의 넓이($\frac{\theta}{2\pi}*\pi r^2 = \frac{1}{2} r^2\theta$)가 나온다.

물론 여기서는 r(반지름)을 1로 놨으니 r 변수는 사라질 것이다.

부채꼴의 각도를 기준으로 놨으니, 이제 삼각형도 계산할 수 있다. 삼각형의 넓이는 가로*세로/2이다.

xy좌표축의 x와 y의 값을 $\theta$로 표현하면 단위원의 매개변수 표현법에 의거 $y=sin\theta, x=cos\theta$로 표현할 수 있다. 다만 여기서는 부채꼴의 각도를 기준으로 표현을 했으니 우리가 쓰는 좌표축의 $y$값이 $cos\theta$가 될것이며 $x$값은 $sin\theta$가 될 것이다. 뭔가 두 길이가 달라진 것 같지만, 사실상 직사각형에서의 삼각형이니 두개는 대칭이다.(엄밀히 매개변수 표현법으로 $y=sin\theta, x=cos\theta$이니, 위의 예에서 $y=sin(90-\theta), x=cos(90-\theta)$가 되고 각각, $y=sin(90-\theta)=cos\theta$, $x=cos(90-\theta)=sin\theta$의 관계가 성립한다.)

$ \theta $를 부채꼴의 각도로 놓았다.

수식으로 표현하면 $\frac{1}{2}sin\theta cos\theta$가 삼각형의 넓이가 될 것이다.

 

그리하여 두 식을 더한 $\frac{1}{2} \theta + \frac{1}{2}sin\theta cos\theta$ 값이 저 사다리꼴과 같은 도형의 부분 넓이가 된다는 것을 알았다.

 

여기까지 우리는 각도를 알면 그 각도에 해당하는 원의 사다리꼴과 같은 도형의 부분넓이를 구할 수 있게 되었으나, 반드시 각도를 알아야 한다는 단점이 있다.

 

여기서 x축 값 만으로 이 넓이를 구하려면, arcsin값만 알면 된다. 위의 그래프에서 x값과 같은 값을 나타내는 것은 $\theta$ 각도를 가지고 구한 $sin$값과 같다는 것을 알 수 있다. 그렇다면, 반대로 x값을 sin함수의 역함수인 arcsin에 넣어주면, 그 값에 해당하는 각도가 구해질 것이고, 그 각도값으로 부채꼴의 넓이 공식에 적용하면 부채꼴의 넓이를 알 수 있으므로 arcsin만 써주면 해결이다.

그렇다면 삼각형 부분은 어떻게 해결할 것인가?

사실 이 삼각형 부분은 x축 값이 밑변, 원의 방정식에서 x값을 대입한 값이 y값이다. 즉, y값은 $y = \sqrt{1-x^2}$이다.

이렇게 되면, 우리는 일반식으로 원에서의 사다리꼴과 같은 형태의 넓이를 x값에 따라 얻을 수 있는 일반식을 만들 수 있다.

 

$\frac{1}{2} arcsin\, x + \frac{1}{2}\cdot x \cdot \sqrt{1-x^2}$

 

다음 포스팅에서는 이를 부정적분으로 구해보는 시간을 가져볼 예정이다.

 

 

피보나치 수열의 일반항과 비율의 극한(황금비)

 

피보나치 수열하면 모르는 사람이 없을 정도로 아주 간단한 규칙을 가진 수열이다.

바로 앞의 두 숫자를 더하면 다음 숫자가 나오는 수열이다.

여기서 앞의 두 숫자는 1, 1 이다.

 

그러면 바로 아래와 같은 수열이 나오게 된다.

 

1 1 2 3 5 8 13 ...

 

물론 이 수열의 극한은 무한대로 발산할 것이 분명하지만, 이 수열의 두 항의 '비율'의 극한은 수렴할까? 수렴한다면 어디로 수렴할까? 한번 확인해보자.

 

여기서 수열의 극한을 확인하려면 항상 일반항이 있어야 한다. 그러나 피보나치 수열은 '앞의 두 수를 더하면 다음 숫자가 된다'는 점화식만 있는 형태이다. 그러면 이 점화식을 통해서 일단 피보나치 수열의 일반항을 구해보도록 하자.

 

피보나치 수열의 일반항 구하기

1. 피보나치 수열의 점화식을 써보자.

  피보나치 수열은 이 전의 두 항을 더하면 다음 항이 되는 수열이다.

  $ a_{n+2} = a_{n+1} + a_{n} $

  이러한 형태 점화식만 있는 상태로 등차, 등비, 멱급수 등등등 그 어떤 수열의 형태도 아니다.

2. 일반식으로 확장

  이 수열의 상태만으로는 우리가 뭔가 찝쩍거릴 건덕지가 없으니까, 일반적인 일반식으로 확장한 뒤 근과 계수와의 관계(Vieta's formulas, 두 근을 $ \alpha, \; \beta $로 놓으면 $ px^2+qx+r=0 $의 방정식에서 $ \alpha + \beta = - \frac{q}{p}, \alpha \beta = \frac{r}{p} $의 관계가 생긴다는 공식)를 활용하여 근을 활용한 일반식으로 변화시켜 볼 것이다. 참고로 수열에서 항수는 차수가 다른 방정식과 동일하게 볼 수 있다.(더 자세한 내용은 >>점화식에서의 특성방정식(characteristic equation)<<에서 확인할 수 있다.)

  $ a_{n+2} = a_{n+1} + a_{n} \Rightarrow x^2 = x + 1 \Leftrightarrow x^2 -x -1 = 0 $와 같이 쓴뒤, $ px^2+qx+r=0 $의 일반식으로 변환시켜주면, $ p = 1, q = -1, r = -1 $이 되고, 근과 계수와의 관계에서 $ \alpha+\beta=-\frac{q}{p}=1, \; \alpha \beta = \frac{r}{p} = -1 $이다.

  이는 다시 쓰면, $ p $가 기본적으로 1이기 때문에 $ \alpha+\beta = -q, \; \alpha \beta = r $이라고 놓을 수 있다.

  그래서 일반식을 다시 근과 계수와의 관계를 이용하여 계수가 아닌 근의 형태로 표현해주면

  $ x^2-(\alpha+\beta)x+\alpha \beta = 0 $

  이를 다시 수열의 항을 통해서 표현해주면

  $ a_{n+2} = (\alpha+\beta)a_{n+1} - \alpha \beta a_n $과 같은 근을 활용한 일반식으로 확장이 되었다.

  이때, $ a_1 = 1, \; a_2 = 1, \; \alpha + \beta = 1, \; \alpha \beta = -1 $이다.

 

3. 반복되는 형태를 만들어서 계산가능하게 만들자

  과거 >>https://omnil.tistory.com/172<<포스팅에서 감마함수를 팩토리얼로 변환하는 과정과 같이 등식의 좌변과 우변이 반복되는 형태를 만들어주게 되면 계산이 되지 않을 것 같은 등식도 계산이 된다. 특히 최종단계를 우리가 직접 계산해서 값을 알 수 있다면 더더욱이 말이다. 참고로 감마함수는 n=1일때 값이 1이며, 우리는 뭔가 이런단계를 거치면 1항이 1, 2항이 1이라는 것을 통해서 값을 구할 수 있을 것이다.

  $ a_{n+2} = (\alpha+\beta)a_{n+1} - \alpha \beta a_n $

  $ a_{n+2} = \alpha a_{n+1} + \beta a_{n+1} - \alpha \beta a_n $

  $ a_{n+2}-\alpha a_{n+1} = \beta a_{n+1} - \alpha \beta a_n $

  $ a_{n+2}-\alpha a_{n+1} = \beta (a_{n+1} - \alpha a_n) $

  이렇게 변환하면 등식의 좌변과 우변의 공동되는 부분의 한 항 차이가 $ \beta $배라는 것을 알 수 있다. 바로 이것으로 우리가 아는 $ a_2 $와 $ a_1 $를 가지고 계산할 수 있는 형태로 반복계산이 가능하다.

  $ a_{n+2}-\alpha a_{n+1} = \beta (a_{n+1} - \alpha a_n) $

  $ a_{n+1}-\alpha a_{n} = \beta (a_{n} - \alpha a_{n-1}) $

  $ \Rightarrow a_{n+2}-\alpha a_{n+1} = \beta^2 (a_{n} - \alpha a_{n-1}) $

  이런식으로 $ \beta $배씩 곱해주면 우항을 a2와 a1항으로 계산할 수 있는 형태로 만들어줄 수 있다.

  이 때, $ \beta $가 몇개 생기는지는 항 수를 보고 생각하면 된다.

  우변의 맨 오른쪽항이 a2항에서 a1항으로 떨어지게 되면, $ \beta $는 한개가 생길 것이다. 즉, an항에서 a1항으로 떨어지면 (n-1)개의 $ \beta $가 생성될 것이다.

  $ a_{n+2}-\alpha a_{n+1} = \beta \cdot \beta^{n-1} \cdot (a_{2} - \alpha a_1) $

  $ a_{n+2}-\alpha a_{n+1} = \beta \cdot \beta^{n-1} \cdot (1 - \alpha \cdot 1) \leftarrow \because a_2=1,\; a_1=1 $

  $ a_{n+2}-\alpha a_{n+1} = \beta \cdot \beta^{n-1} \cdot \beta \leftarrow \because \alpha + \beta = 1 $

  $ a_{n+2}-\alpha a_{n+1} = \beta^{n+1} $

  즉  $ a_{n+2}-\alpha a_{n+1} $는 $ \beta $를 $ n+1 $번 곱한 것이니 항수 만큼 $ \beta $를 곱해주는 횟수가 된다는 것을 알 수 있다. 그렇다면 우리가 알고싶은 $ a_n $을 기준으로 하는 식으로 바꿔주면

  $ a_{n}-\alpha a_{n-1} = \beta^{n-1} \cdots (1)$

  이 되고, 이는 $ \alpha $ 변수와 $ \beta $ 변수를 바꾸어도 변수위치만 바뀐 동일한 식이 나온다.

  $ a_{n}-\beta a_{n-1} = \alpha^{n-1} \cdots (2)$

4. 연립하여 $ a_n $에 대한 일반항으로 풀어준다.

  변수 두개에 식이 두개가 나왔으니 연립방정식으로 풀 수 있다.

  (2)식에 $ \frac{\alpha}{\beta} $배를 해준 뒤 (1)-(2)식을 해줘서 $ a_{n-1} $항을 소거하여 $ a_n $의 일반항을 얻을 수 있다.

  $ a_{n}-\alpha a_{n-1} = \beta^{n-1} \cdots (1)$

  $ \frac{\alpha}{\beta}a_{n}-\alpha a_{n-1} = \frac{\alpha^{n}}{\beta} \cdots (2)$

  $ (1)-(2) $

  $ a_{n}-\frac{\alpha}{\beta}a_n = \beta^{n-1}-\frac{\alpha^n}{\beta} $

  $ \beta a_{n}-\alpha a_n = \beta^{n}-\alpha^n $

  $ (\beta -\alpha) a_n = \beta^{n}-\alpha^n $

  $ \therefore a_n = \frac{\beta^{n}-\alpha^n}{\beta -\alpha} $

  일반항 겟!!

  이제 일반항에 값만 대입해주면 진짜 n에 몇번째 항인지만 대입해주면 거기에 해당하는 값이 나오는 일반항이 된다.

5. $ \alpha $와 $ \beta $의 값 구하여 일반항에 대입하기

  여기서 $ \alpha $와 $ \beta $는 사실 $ x^2 -x -1 = 0 $의 두 근과 같기 때문에 근의 공식을 통하여 바로 값을 구할 수 있다.

  $ ax^2+bx+c = 0 $에서 두 근은 $ \frac{-b\pm \sqrt{b^2-4ac}}{2a} $식으로 구할 수 있다.
  $ \frac{1\pm \sqrt{5}}{2}, \; a=1, \: b=-1, \: c=-1 $

  $ \beta = \frac{1 + \sqrt{5}}{2}, \; \alpha = \frac{1 - \sqrt{5}}{2} $

  $ a_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n}{\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}} $

  $ \therefore a_n = \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right) $

  이렇게 피보나치 수열의 일반항을 구했다!!

  근데, 유리수의 합으로 나타나는 피보나치 수열에서 일반항에 무리수가 들어가는 것이 신기하지 않은가!

 

피보나치 수열의 비율의 극한

이렇게 일반항을 구했으면 비율의 극한도 쉽게 구할 수 있다.

여기서는 더 큰수를 더 작은수로, 즉 $ \frac{a_{n+1}}{a_n} $의 비를 구할 것이다.

이번엔 비율을 구할 것이기 때문에, 숫자까지 들어간 일반항 보다는 문자로 표현된 더 한눈에 보기 간편한 일반항을 사용하여 극한을 구해볼 것이다.

1. 비율 식 구하기

  $ a_{n+1} = \frac{\beta^{n+1}-\alpha^{n+1}}{\beta -\alpha} $

  $ a_{n} = \frac{\beta^{n}-\alpha^{n}}{\beta -\alpha} $

  $ \frac{a_{n+1}}{a_n} = \frac{\frac{\beta^{n+1}-\alpha^{n+1}}{\beta -\alpha}}{\frac{\beta^{n}-\alpha^{n}}{\beta -\alpha}} $

  $ \frac{a_{n+1}}{a_n} = \frac{\beta^{n+1}-\alpha^{n+1}}{\beta^{n}-\alpha^{n}} $

  $ \frac{a_{n+1}}{a_n} = \frac{\beta-\alpha \left(\frac{\alpha}{\beta}\right)^n}{1-\left(\frac{\alpha}{\beta}\right)^{n}} $

2. 극한 씌워주기

  $ \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\beta-\alpha \left(\frac{\alpha}{\beta}\right)^n}{1-\left(\frac{\alpha}{\beta}\right)^{n}} $

  여기서 $ \beta = \frac{1 + \sqrt{5}}{2}, \; \alpha = \frac{1 - \sqrt{5}}{2} $이고, $ \beta $가 $ \alpha $보다 크기 때문에 $ \left(\frac{\alpha}{\beta}\right)^n $항은 $ n $이 무한대로 갈 때 값이 0으로 수렴한다.

  참고로 실제 값을 대입해서 계산해본 $ \left(\frac{\alpha}{\beta}\right) $ 값은 $ \frac{\sqrt{5}-3}{2} $이며, 그 값은 약 -0.382이다. 즉, 이 값을 무한대로 제곱할 경우 양과 음을 반복 진동하며 수렴한다.

  즉, 극한을 취한 뒤의 값은

  $ \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{\beta-\alpha 0}{1-0} $

  $ \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \beta $

  $ \therefore \beta $

  이며, 이 $ \beta $값은  $ \frac{1 + \sqrt{5}}{2} $이므로, 피보나치 수열의 비율의 극한 값은 $ \frac{1 + \sqrt{5}}{2} $이 된다.

 

  그러면 이 값은 과연 무엇일까

 

황금비

  인생을 살면서 '황금비'라는 단어를 한번은 들어본다.

  황금비는 1: 1.618로써 근사하면 5:8정도의 비율을 나타내는 것을 황금비라고 한다.

  이것은 우리가 어떤 비율을 봤을 때 가장 아름답다고 생각하는 비율이라고 하는데, 이 1.618이라는 값은

  $ \frac{1 + \sqrt{5}}{2} $을 계산하면 나오는 값이다.

  즉, 피보나치 수열의 비율을 극한으로 가져가면 황금비를 가진다는 사실!

Gamma function(감마함수)를 통하여 gamma(n+1)=n!(팩토리얼, factorial) 증명

 

 

 

1. 감마함수 정의

    $ \Gamma \left ( n \right ) = \int_{0}^{\infty }e^{-x}\cdot x^{n-1 }\: dx $

2. gamma(n+1) = n! 증명

  2-1) gamma(n+1) 재정의

    $ \Gamma \left ( n+1 \right ) = \int_{0}^{\infty }e^{-x}\cdot x^{n }\: dx $

  2-2) gamma(n+1) 부분적분

    부분적분법

    $ \int u(x)v'(x) \; dx = u(x)v(x) + \int u'(x)v(x)\: dx $

    부분적분

    $ \int_{0}^{\infty }x^{n}e^{-x}\: dx = [-x^{n}e^{-x}]_{0}^{\infty} - \int_{0}^{\infty }nx^{n-1}(-1)e^{-x}\: dx $

    $ \int_{0}^{\infty }x^{n}e^{-x}\: dx = \lim_{x\rightarrow \infty}(-x^{n}e^{-x})-(0e^{0}) + n \int_{0}^{\infty }x^{n-1}e^{-x}\: dx $

    $ \int_{0}^{\infty }x^{n}e^{-x}\: dx = n \int_{0}^{\infty }x^{n-1}e^{-x}\: dx $

    $ \Gamma (n+1) = n \Gamma (n) $

  2-3) gamma(1) 계산

    $ \Gamma (1) = \int_{0}^{\infty}e^{-x} \cdot x^{1-1} \: dx $

    $ \qquad \, = [-e^{-x}]_{0}^{\infty} $

    $ \qquad \, = \lim_{x\rightarrow \infty} (-e^{-x}) - (-e^{0}) $

    $ \qquad \, = 0 - (-1) $

    $ \qquad \, = 1 $

  2-4) 순환 반복하므로 gamma(n+1)은 n!

 

    $ \Gamma (n+1) = n \Gamma (n) $

    $ \Gamma (n) = (n-1) \Gamma (n-1) = n \times (n-1) \times \Gamma (n-1) $

    $ \vdots $

    $ \Gamma (2) = 1 \cdot \Gamma (1) $

    $ \Gamma (1) = 1 $

    $ \Gamma (n+1) = n \times (n-1) \times ... \times 2 \times 1 $

    $ \therefore \Gamma (n+1) = n! = \int_{0}^{\infty}e^{-x}\cdot x^{n} \: dx $

+ Recent posts