[Windows] Windows10 OS 설치 USB 만들기!

 

윈도우를 PC에 설치하기로 마음먹으셨다면 우선 윈도우10 OS 설치 USB를 만들어 주셔야합니다.

 

이는 거의 모든 OS설치시에 필요한 것입니다.(가끔 Mac에서 부트캠프로 윈도우를 설치하는 경우 따로 USB를 만들지 않고도 바로 설치가 가능한 경우같은 예외가 있기는 합니다.)

 

여기서 '설치 USB'라는 것은 '부팅가능한(Bootable)' USB를 만든다는 뜻으로, 단순히 파일을 옮기거나 복사붙여넣기 하는 것이 아닙니다.

 

블로그의 정체성에 따라 순서대로 나열해 보도록 하겠습니다.

 

1) ISO파일을 다운로드 받는다!

요새는 윈도우10 ISO파일을 다운로드 받기가 힘들어졌습니다. 링크를 꼭꼭 숨겨놨거든요.

거기에 편승해서 이상한 링크에서 받게하는 이상한 사람들도 많으니, 꼭 마이크로소프트 공식 홈페이지에서 받도록 합시다.

마이크로소프트에서 공식으로 받을 수 있는 방법은 이전 포스팅에 정리해 놓았으니 참고하시면 됩니다.

 

2) 설치가능한 USB를 만들어주기!

2-1) USB 선택!

설치가능한 USB를 만들어주게되면, 해당 USB내에 저장된 모든 것이 싹 포맷되며, OS의 ISO만 설치가능한 형태로 써지게 된다. 그러기에 해당 ISO파일 크기보다 크지만, 내용은 없는(혹은 백업한 뒤의) USB를 고르는 것이 중요합니다.

 

2-2) Rufus설치!

설치가능한 USB(Bootable USB)를 만들 수 있는 프로그램은 많지만, 공식적으로 ubuntu에서 제시하는 프로그램은 rufus이다.

https://rufus.ie/에 접속하면 한글로 친절하게 모든 설명이 나와있다.

여기서는 rufus 설치파일을 다운로드 받아서 설치해도 상관없고, Portable(한글 번역 '이동식') 버전을 받아도 상관없다.

둘의 차이라면 설치파일은 컴퓨터에 설치 후에 실행하는 것이고 Portable은 그냥 바로 실행이 된다는 점?

기본 설정법도 홈페이지에 나온 그대로 놓고 작업하면된다.

처음에 장치를 선택해주고 부트 선택에서 우리가 다운로드 받은 Win10_21H1_Korean_x64.iso파일만 잘 선택해주고 아래 시작만 눌러주면 끝.

<출처: https://rufus.ie/>에서 퍼온 사진이라 ubuntu지만, 부트선택 파일만 윈도우 iso로 잘 선택하면 장땡!

이렇게 해서 상태에 완료가 뜨면 부팅 USB 만들기는 성공했습니다. 이제 직접 OS를 깔 차례!

0] 포스팅의 변

윈도우10 발매 초창기에는 홈페이지에서 쉽게 iso파일을 받을 수 있게 해놨는데, 요새는 어느정도 윈도우 10이 확산되었다 싶었는지 '구매'에 초점을 맞춰서 그런지 쉽게 iso파일을 받을 수 없게 해놓았다.(아직까지도 복잡하게 어떻게 어떻게 하면 받을 수 있기는 하다. 정말 극악이라 그렇지..)(구매 안해도 윈10은 잘 돌아가는데, 대신 화면 오른쪽 아래에 반투명하게 'Windows 정품 인증'이 뜬다.)

근데 이걸 개발할때나 패킷딸때만 썼던 크롬 개발자도구로 다운 받을 수 있는 방법이 있어 공유하고자 한다.

 

1] 크롬으로 마이크로소프트 사이트에서 공식 ISO파일 받기

0) 크롬브라우저 기준!

1) 먼저 과거에 바로 iso를 받을 수 있었던 마이크로소프트 윈도우10 다운로드 링크에 접속

2) 그러나 아무리 화면을 살펴봐도 iso를 바로 받을 수 있는 버튼은 없고, '업데이트'와 '도구다운로드' 버튼만 보일 것이다.

3) 여기서 크롬의 개발자도구를 켠다. 개발자도구를 켜는 단축키는 F12이다.

개발자 도구가 켜진 화면

4) 여기서 아래 이미지에 표시된 대로, 1번 2번 3번을 각각 클릭한 뒤 F5(새로고침)를 누른다.

꼭 페이지를 '새로고침' 해야 한다.

5) 그러면 이렇게 iso파일을 받을 수 있는 페이지가 나오게 되고, 여기서 [버전 선택]을 눌러 [윈도우10]을 선택한 뒤 확인을 누르고, '유효성 검사'가 지나간 다음, [언어 선택]에서 [한국어]를 선택하면 다시 '유효성 검사'가 나온 뒤 32bit와 64bit 선택창이 나오게 된다.

 

 

6) 여기서 32bit나 64bit 다운로드 버튼을 클릭하면 바로 다운로드 창이 열리며 다운로드 할 수 있게 된다.

7) 이 파일을 가지고 rufus와 같은 프로그램을 이용하여 usb에 구워주면 부팅디스크 혹은 os 설치 usb(Bootable USB)가 완성된다.(이전 Ubuntu Bootable USB만드는 포스팅 참조)(윈도우 버전으로 새로 포스팅함 포스트는 여기)

원넓이의 부정적분 구하기 - 2) 부정적분으로 구해보기

intetral root(1-x^2) dx

 

굉장히 오랜만에 다시 써보는 포스팅이네요.

저번 시간에 원 내부의 사다리꼴과 같은 도형의 넓이를 구하는 방법을 가장 기본적인 공식(부채꼴 공식+삼각형 공식)을 가지고 구해보았습니다.

원 내부의 하얀부분은 "활꼴의 절반"이라고 쉽게 설명이 가능한데, 그 반대편에 대한 용어는 따로 존재하지 않네요..

이번 시간에는 이것을 부정적분으로 x값을 가지고 바로 구하는 방법을 알아볼까 합니다.

저번에 각도 $\theta$를 부채꼴 부분으로 잡았는데, 이번에도 한번 이렇게 잡아서 수식을 전개해보려고 합니다.

부채꼴 부분이 $\theta$입니다.

일단 이렇게 특수한 상황에 가기 전에, 일반적으로 원의 넓이를 적분으로 어떻게 구하는지 다시 한번 살펴보도록하겠습니다.

 

자, 일단 원의 방정식은 $x^{2}+y^{2}=r^{2}$입니다. 저희는 $r$이 1인 단위원을 사용하기 때문에 식은 더욱 간단하게 $x^{2}+y^{2}=1$이 되겠네요.

이를 좀 더 보기 편하게 y에 대한 값으로 나타내면(x의 값에 따라 y값을 결정하는 방식) $y=\pm \sqrt{1-x^{2}}$으로 정리할 수 있습니다.

이 때 부호에 따라 양의 부호는 y축을 기준으로 0보다 위에 그려지는 반원을, 음의 부호는 아래쪽에 그려지는 반원을 의미합니다.

현재 저희는 위에 그려지는 반원 중에서도 1사분면 위의 사반원에 대해 구하려고 하고 있으므로, 이에 대한 적분 수식은 $\int \sqrt{1-x^2} \, dx$라고 볼 수 있습니다.

 

여기서 루트가 들어간 적분은 그냥 풀기에 너무 힘들기 때문에 x를 치환시켜 줄 것입니다.

예전에 고등학교 때 적분을 공부하면서 도대체 왜 치환하는지 의문을 가졌었는데, 실상은 치환해서 더 쉬운 형태로 만들어서 적분을 쉽게 만들기 위해서 하는 작업입니다 치환적분은!

 

루트를 없애줄 수 있으면서 적분 형태를 간단하게 해줄 수 있는 것이 무엇이 있나 한번 살펴보다보니, 언뜻 지나가는 공식이 있습니다.

$ sin^{2} \theta + cos^{2} \theta = 1 $이라는 공식이지요.(이 공식은 그냥 암기할 게 아니라, 너무 당연한 것을 표현한 것입니다. 아까 단위원의 방정식은 $x^{2}+y^{2}=1$이라고 했습니다. 이것은 원 위에서 무조건 성립하는 값입니다. 여기서 매개변수 표현법을 사용하면 $y=sin \theta, x=cos \theta$라고 했습니다. 즉, 단위원의 방정식에 매개변수 표현법을 사용하여 표현 방법만 x, y 변수가 아닌 $\theta$변수 로 바꿔준 것이 됩니다.)

이항해보면

$cos^{2} \theta =1-sin^{2} \theta$

제곱을 제거하면

$cos \theta = \sqrt{1-sin^{2} \theta}$

어디선가 많이 본 보양이지요?

즉, $x$를 $sin \theta$로 치환하면 자연스럽게 루트가 들어간 식이 정리되면서 적분이 가능한 형태로 바뀔 것 같습니다!

일단, $x$를 치환하면 $dx$도 같이 치환해 줘야 하므로 미분을 때려 봅시다.

$x=sin \theta$

$dx=cos \theta d\theta$

그럼 이렇게 준비된 x를 가지고 치환적분을 해보겠습니다.

$ \int \sqrt{1-x^{2}} dx $

$ \int \sqrt{1-sin^{2} \theta} cos \theta d\theta]_{x=sin \theta, dx=cos \theta d\theta} $

$ \int cos \theta \cdot cos \theta d\theta $

$ \int cos^{2} \theta \, d\theta $

여기서 다시 난관에 봉착합니다. $ cos^{2} \theta $를 적분하려면 많은 애로사항이 꽃핍니다.

일단 제곱을 떨어내야하는데, 어떻게 떨어내야할지 생각해봤더니... 배각공식을 역이용해서 떨어보겠습니다.

$ cos 2\theta \, = \, cos^{2} \theta - sin^{2} \theta $

참고로 배각공식은 삼각함수의 덧셈공식에서 온겁니다

$ cos (\alpha+\beta) = cos \alpha \cdot cos \beta - sin \alpha \cdot sin \beta $

자, 일단 $ cos^{2} \theta $를 $ cos 2\theta $로 바꿀 수 있는 실마리를 잡았는데, 뒤에 $ sin^{2} \theta $는 어떻게 없앨 수 있을까요?

여기서 삼각함수 무적의 공식 $ sin^{2} \theta + cos^{2} \theta = 1 $이 등장합니다.

$ sin^{2} \theta = 1 - cos^{2} \theta $로 만들고, 원 식에 대입하면

$ cos 2\theta = cos^{2} \theta - (1 - cos^{2} \theta) $

$ cos 2\theta = 2cos^{2} \theta - 1 $

우리는 $ cos^{2} \theta $를 바꿔야 하니 $ cos^{2} \theta $로 정리해보죠

$ cos^{2} \theta = \frac{cos 2\theta +1}{2} $

그럼 바로 대입하면

$ \int cos^{2} \theta \, d\theta $

$ \int \frac{cos 2\theta +1}{2} \, d\theta $

$ \frac{1}{2} (\int (cos 2\theta + 1) \, d\theta) $

$ \frac{1}{2} (\frac{1}{2}sin 2\theta + \theta) $ +C 생략

자, 드디어 적분을 완료해서 적분기호가 사라졌습니다.

그러나 $ sin 2\theta $는 뭔가 보기에 깔끔하지 않죠.. 똑같이 삼각함수 배각공식을 이용하여 단일 $ \theta $항으로 만들어줍시다.

$ sin 2\theta = 2 \cdot sin \theta \cdot cos\theta $

물론 이 배각공식도 덧셈공식에서 왔습니다.

$ sin (\alpha+\beta) = sin \alpha \cdot cos \beta + cos \alpha \cdot sin \beta $

따라서 원 식에 배각공식을 이용하여 풀어주면

$ \frac{1}{2} (\frac{1}{2}(2 \cdot sin \theta \cdot cos\theta) + \theta) $

$ \frac{1}{2} (sin \theta \cdot cos\theta + \theta) $

$ \frac{1}{2}sin \theta \cdot cos\theta + \frac{1}{2}\theta $

여기서

$ x = sin \theta $

$ \theta = arcsin x $

$ y = \sqrt{1-x^{2}} = cos \theta $

이므로, $ \theta $에 대한 식이 아닌, 원 x에 대한 식으로 바꿔주면

$ \frac{1}{2} \cdot x \cdot \sqrt{1-x^{2}} + \frac{1}{2} \cdot arcsin \, x $

이 나오고, 이는 이 전 포스팅의 결과 식과 완전히 같은 모양이 됩니다.

 

원넓이의 부정적분 구하기원넓이의 부정적분 구하기 - 1) 일반공식으로 구해보기

 

원넓이를 처음 배우는 것은 초등학교 때, $\pi$를 3.14 근사값으로 배우면서 공식 암기와 함께 시작한다.

이후 중학교 과정에서 수의 확장과 함께 무리수로 $\pi$를 배워 무리수가 들어간 공식으로 배우고, 고등학교에 이르러서는 적분을 통해 원의 넓이를 새삼스레 다시 구해본다.

결국 우리의 수학 교과과정은 원에 대해서 배우는 것이다 라고 말해도 과언이 아닐 정도이다.

 

여기서 고등학교에서 정적분으로 원의 넓이를 구할 때 기계적으로 치환, 공식대입, 정적분을 통해서 '아 그냥 그렇게 되는구나'라고 알고 넘어가는 사람들이 대다수 일 터.

이번에 뭔가 궁금증이 생겨서 다시 풀어보니, 예전엔 그냥 단순히 치환하고 공식을 대입해서 풀었던 여기에는 참 많은 이유들이 있다는 것을 알게되었다.

 

그리하여 부정적분을 통해서 왜 이렇게 치환하고 그것으로 어떻게 넓이를 구하는지 알아보고자 한다.

요런식으로 x가 0부터 0.5일때 원의 넓이를 구하는 방법을 알아보려고 한다.

 

물론 원은 사분원 넓이의 네배이니까 적분으로 원넓이 공식을 유도할 때 처럼, 반지름이 1인 단위원을 기준으로 하여 사분원의 넓이를 구하는 식으로 진행한다.

 

1] 일반식으로 원 넓이 구하기

부정적분으로 넘어가기 전에, 우리가 아는 일반 공식으로 $x$축에 대한 원의 넓이를 구할 수 있다.

딱 위의 그림에서와 같이 한번에 구하려면 왠지 적분을 써야 할 것 같지만,

호와 삼각형으로 나눠서 구한다면?

위 그림과 같이 부채꼴과 삼각형으로 나눠서 구한다면 쉽게 원의 부분 넓이를 구할 수 있다.

부채꼴의 넓이는 호도법으로 전체 각도($2\pi$(360도))에 대한 원 넓이 $\pi r^2$을 전체 각도에 대한 부분각도의 비 만큼 곱해주면( $\frac{\theta}{2\pi}$ ) 부채꼴의 넓이($\frac{\theta}{2\pi}*\pi r^2 = \frac{1}{2} r^2\theta$)가 나온다.

물론 여기서는 r(반지름)을 1로 놨으니 r 변수는 사라질 것이다.

부채꼴의 각도를 기준으로 놨으니, 이제 삼각형도 계산할 수 있다. 삼각형의 넓이는 가로*세로/2이다.

xy좌표축의 x와 y의 값을 $\theta$로 표현하면 단위원의 매개변수 표현법에 의거 $y=sin\theta, x=cos\theta$로 표현할 수 있다. 다만 여기서는 부채꼴의 각도를 기준으로 표현을 했으니 우리가 쓰는 좌표축의 $y$값이 $cos\theta$가 될것이며 $x$값은 $sin\theta$가 될 것이다. 뭔가 두 길이가 달라진 것 같지만, 사실상 직사각형에서의 삼각형이니 두개는 대칭이다.(엄밀히 매개변수 표현법으로 $y=sin\theta, x=cos\theta$이니, 위의 예에서 $y=sin(90-\theta), x=cos(90-\theta)$가 되고 각각, $y=sin(90-\theta)=cos\theta$, $x=cos(90-\theta)=sin\theta$의 관계가 성립한다.)

$ \theta $를 부채꼴의 각도로 놓았다.

수식으로 표현하면 $\frac{1}{2}sin\theta cos\theta$가 삼각형의 넓이가 될 것이다.

 

그리하여 두 식을 더한 $\frac{1}{2} \theta + \frac{1}{2}sin\theta cos\theta$ 값이 저 사다리꼴과 같은 도형의 부분 넓이가 된다는 것을 알았다.

 

여기까지 우리는 각도를 알면 그 각도에 해당하는 원의 사다리꼴과 같은 도형의 부분넓이를 구할 수 있게 되었으나, 반드시 각도를 알아야 한다는 단점이 있다.

 

여기서 x축 값 만으로 이 넓이를 구하려면, arcsin값만 알면 된다. 위의 그래프에서 x값과 같은 값을 나타내는 것은 $\theta$ 각도를 가지고 구한 $sin$값과 같다는 것을 알 수 있다. 그렇다면, 반대로 x값을 sin함수의 역함수인 arcsin에 넣어주면, 그 값에 해당하는 각도가 구해질 것이고, 그 각도값으로 부채꼴의 넓이 공식에 적용하면 부채꼴의 넓이를 알 수 있으므로 arcsin만 써주면 해결이다.

그렇다면 삼각형 부분은 어떻게 해결할 것인가?

사실 이 삼각형 부분은 x축 값이 밑변, 원의 방정식에서 x값을 대입한 값이 y값이다. 즉, y값은 $y = \sqrt{1-x^2}$이다.

이렇게 되면, 우리는 일반식으로 원에서의 사다리꼴과 같은 형태의 넓이를 x값에 따라 얻을 수 있는 일반식을 만들 수 있다.

 

$\frac{1}{2} arcsin\, x + \frac{1}{2}\cdot x \cdot \sqrt{1-x^2}$

 

다음 포스팅에서는 이를 부정적분으로 구해보는 시간을 가져볼 예정이다.

 

 

캄파리(Campari)

 

이마트에서 이 작은병(200ml) 하나에 만 천원이나하는 비싼 술

1860년 이탈리아 사람인 가스빠레 깜빠리 라는 사람이 약용 리큐르인 비터스를 개량하여 만든 술

용담 뿌리가 들어가서 쓴맛이 난다.

 

활용가능 칵테일은 캄파리 소다, 캄파리 오렌지, 캄파리 비어

'Beverages > Cocktail&Liquor' 카테고리의 다른 글

[리큐르] 힙노틱(HPNOTIQ)  (0) 2022.01.24

안녕하세요.

 

회사에서 업무 PC를 우분투로 사용하면서 화면 캡쳐할 일이 종종 있습니다.

 

제가 사용하는 우분투 16.04에는 기본적으로 총 6가지 방법의 캡쳐 기능을 제공합니다.

 

'전체 화면 캡쳐', '활성화 창 캡쳐', '선택 영역 (부분) 캡쳐' 가 가능하고,

 

각각의 캡쳐에 대해 '그림 파일로 저장'과 '클립 보드로 복사' 기능을 각각 제공합니다.

 

'전체 화면'은 현재 모니터에 보이는 모든 화면을 (여러대의 모니터 사용시 모든 모니터 화면),

 

'활성화 창'은 현재 선택되있는 창을,

 

'선택 영역 캡쳐' 시에는 화면을 선택할 수 있도록 마우스 포인트가 십자 형태로 바뀝니다.

 

 

그리고 '그림 파일로 저장'은 말 그대로 그림 파일로 저장할 수 있는 창이 떠서 그림파일로 저장할 수 있게 해주고,

 

'클립 보드로 복사'는 추가로 창이 뜨지는 않고, 그림이 클립보드로 복사되서 (그림을 Ctrl+c 한 효과), 붙여녛기로 그림판이나 문서 편집 프로그램에 그림을 삽입할 수 있게 해줍니다.

 

 

각각의 경우 기본 단축키는 다음과 같습니다.

 

* 'Print' 키는 'Print Screen' 키를 말합니다.

 

 

 전체 화면 캡쳐

 활성화 창 캡쳐

 선택 영역 캡쳐

 그림 파일로 저장

Print 

Alt + Print 

 Shift + Print

 클립 보드로 복사

 Ctrl + Print

Ctrl + Alt + Print 

Ctrl + Shift + Print 

 

 

위의 단축키들은 변경이 가능합니다.

 

'환경설정 (전체설정) -> 키보드 -> 바로가기 -> 스크린샷' 메뉴에 보면 위의 6 종류의 단축키를 설정이 가능합니다.

 

저는 윈도우에서 원노트를 통한 부분 캡쳐를 '윈도우 + S' 를 사용하기 때문에 우분투도 이와 유사하게 'Alt + S' 로 맞춰주었습니다.



출처: https://harryp.tistory.com/595 [Park's Life]

Could not get lock /var/lib/apt/lists/lock - open (11: Resource temporarily unavailable)
Unable to lock directory /var/lib/apt/lists/

 

Error:

Could not get lock /var/lib/apt/lists/lock - open (11: Resource temporarily unavailable)
Unable to lock directory /var/lib/apt/lists/

 

Reason:

이미 리눅스에서 다른 소프트웨어의 업데이트가 진행중일 때 강제로 다른 소프트웨어의 업데이트를 명령하면 생기는 오류이다.

 

Solution:

이전의 업데이트를 취소하거나 여의치 않을 경우 컴퓨터를 재부팅 한 뒤 업데이트 코드를 사용한다.

(필자는 sudo ubuntu-drivers autoinstall 코드 사용시 발생한 에러였음. 이때 자동으로 기본 소프트웨어를 업데이트 하던 중이라 재부팅 하고 바로 아무 작업도 하지 않은 채 코드를 적용하였더니 문제 해결!)

단순 선형 회귀에서 상관계수와 결정계수와의 관계(The relationship between a correlation coefficient and a coefficient of determination)

 

1) $ r(x, y) $

 $ r(x, y) = \frac{\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i-\bar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 

2) $ r(\hat{y}, y) $

 $ r(\hat{y}, y) = \frac{\sum_{i=1}^{n}(\hat{y}_i-\bar{y})(y_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}(\hat{y}_i-\bar{y})^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 $ \qquad \quad = \frac{\sum_{i=1}^{n}(\hat{y}_i-\bar{y})(y_i-\hat{y}_i+\hat{y}_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}(\hat{y}_i-\bar{y})^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 $ \qquad \quad = \frac{\sum_{i=1}^{n}(\hat{y}_i y_i-\bar{y} \hat{y}_i-\bar{y} y_i+\bar{y}^2)}{\sqrt{\sum_{i=1}^{n}(\hat{y}_i-\bar{y})^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 $ \qquad \quad = \frac{\sum_{i=1}^{n}[(y_i - \hat{y}_i)(\hat{y}_i-\bar{y})+(\hat{y}_i - \bar{y})^2]}{\sqrt{\sum_{i=1}^{n}(\hat{y}_i-\bar{y})^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $
 $ \qquad \quad meanwhile, $
 $ \qquad \quad SST = SSR+SSE $ 
 $ \qquad \quad \sum_{i=1}^{n}(y_i - \bar{y})^2 = \sum_{i=1}^{n}((y_i - \hat{y}_i) + (\hat{y}_i - \bar{y}))^2 $ 
 $ \qquad \quad \qquad \qquad \qquad = \sum_{i=1}^{n}[e_i + (\hat{y}_i-\bar{y})]^2, e_i = (y_i-\hat{y}_i) $  
 $ \qquad \quad \qquad \qquad \qquad = \sum_{i=1}^{n}e_{i}^{2}+2\sum_{i=1}^{n}e_i(\hat{y}_i-\bar{y})+\sum_{i=1}^{n}(\hat{y}_i-\bar{y})^2 $  
 $ \qquad \quad \qquad \qquad \qquad \therefore \sum_{i=1}^{n}e_i(\hat{y}_i-\bar{y}) = 0 $ 
 $ \qquad \quad = \frac{\sum_{i=1}^{n}(\hat{y}_i - \bar{y})^2}{\sqrt{\sum_{i=1}^{n}(\hat{y}_i-\bar{y})^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 $ \qquad \quad = \sqrt{\frac{\sum_{i=1}^{n}(\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 

3) $ r(x, y) = r(\hat{y}, y) $

 $ \hat{y}_i = \beta_0 + \beta_1 x_i $

 $ x_i = \frac{\hat{y}_i - \beta_0}{\beta_1} $

 $ \bar x = \frac{1}{n}\sum_{i=1}^{n}\frac{\hat{y}_i - \beta_0}{\beta_1} $

 $ \quad = \frac{1}{n \beta_1}(\sum_{i=1}^{n}\hat{y}_i - n\beta_0) $

 $ \quad = \frac{1}{n \beta_1}\sum_{i=1}^{n}\hat{y}_i - \frac{\beta_0}{\beta_1} $

 $ r(x, y) = \frac{\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i-\bar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 $ \qquad \quad = \frac{\sum_{i=1}^{n}(\frac{\hat{y}_i - \beta_0}{\beta_1}-\frac{1}{n \beta_1}\sum_{i=1}^{n}\hat{y}_i + \frac{\beta_0}{\beta_1})(y_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}(\frac{\hat{y}_i - \beta_0}{\beta_1}-\frac{1}{n \beta_1}\sum_{i=1}^{n}\hat{y}_i + \frac{\beta_0}{\beta_1})^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 $ \qquad \quad = \frac{\frac{1}{\beta_1}\sum_{i=1}^{n}(\hat{y}_i - \beta_0-\frac{1}{n}\sum_{i=1}^{n}\hat{y}_i + \beta_0)(y_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}\frac{1}{\beta_1^2}(\hat{y}_i - \beta_0-\frac{1}{n}\sum_{i=1}^{n}\hat{y}_i + \beta_0)^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 $ \qquad \quad = \frac{\frac{1}{\beta_1}\sum_{i=1}^{n}(\hat{y}_i - \beta_0-\frac{1}{n}\sum_{i=1}^{n}\hat{y}_i + \beta_0)(y_i-\bar{y})}{\frac{1}{\beta_1}\sqrt{\sum_{i=1}^{n}(\hat{y}_i - \beta_0-\frac{1}{n}\sum_{i=1}^{n}\hat{y}_i + \beta_0)^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 $ \qquad \quad = \frac{\sum_{i=1}^{n}(\hat{y}_i - \beta_0-\frac{1}{n}\sum_{i=1}^{n}\hat{y}_i + \beta_0)(y_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}(\hat{y}_i - \beta_0-\frac{1}{n}\sum_{i=1}^{n}\hat{y}_i + \beta_0)^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 $ \qquad \quad = \frac{\sum_{i=1}^{n}(\hat{y}_i-\frac{1}{n}\sum_{i=1}^{n}\hat{y}_i)(y_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}(\hat{y}_i-\frac{1}{n}\sum_{i=1}^{n}\hat{y}_i)^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $
$ \qquad \quad y_i = \hat y_i + e_i $
$ \qquad \quad \sum_{i=0}^n y_i = \sum_{i=0}^n \hat y_i + \sum_{i=0}^n e_i $
$ \qquad \quad \sum_{i=0}^n y_i = \sum_{i=0}^n \hat y_i \; \because $ sum of errors = 0

 $ \qquad \quad = \frac{\sum_{i=1}^{n}(\hat{y}_i-\bar y)(y_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}(\hat{y}_i - \bar y)^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 $ \qquad \quad = r(\hat y, y) = \sqrt{\frac{\sum_{i=1}^{n}(\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n}(y_i-\bar{y})^2}} $

 

 $ \therefore r(x, y)^2 = r(\hat y, y)^2 = \frac{\sum_{i=1}^{n}(\hat{y}_i - \bar{y})^2}{\sum_{i=1}^{n}(y_i-\bar{y})^2} = \frac {SSR}{SST} = R^2 $ (only in simple regression)

피보나치 수열의 일반항과 비율의 극한(황금비)

 

피보나치 수열하면 모르는 사람이 없을 정도로 아주 간단한 규칙을 가진 수열이다.

바로 앞의 두 숫자를 더하면 다음 숫자가 나오는 수열이다.

여기서 앞의 두 숫자는 1, 1 이다.

 

그러면 바로 아래와 같은 수열이 나오게 된다.

 

1 1 2 3 5 8 13 ...

 

물론 이 수열의 극한은 무한대로 발산할 것이 분명하지만, 이 수열의 두 항의 '비율'의 극한은 수렴할까? 수렴한다면 어디로 수렴할까? 한번 확인해보자.

 

여기서 수열의 극한을 확인하려면 항상 일반항이 있어야 한다. 그러나 피보나치 수열은 '앞의 두 수를 더하면 다음 숫자가 된다'는 점화식만 있는 형태이다. 그러면 이 점화식을 통해서 일단 피보나치 수열의 일반항을 구해보도록 하자.

 

피보나치 수열의 일반항 구하기

1. 피보나치 수열의 점화식을 써보자.

  피보나치 수열은 이 전의 두 항을 더하면 다음 항이 되는 수열이다.

  $ a_{n+2} = a_{n+1} + a_{n} $

  이러한 형태 점화식만 있는 상태로 등차, 등비, 멱급수 등등등 그 어떤 수열의 형태도 아니다.

2. 일반식으로 확장

  이 수열의 상태만으로는 우리가 뭔가 찝쩍거릴 건덕지가 없으니까, 일반적인 일반식으로 확장한 뒤 근과 계수와의 관계(Vieta's formulas, 두 근을 $ \alpha, \; \beta $로 놓으면 $ px^2+qx+r=0 $의 방정식에서 $ \alpha + \beta = - \frac{q}{p}, \alpha \beta = \frac{r}{p} $의 관계가 생긴다는 공식)를 활용하여 근을 활용한 일반식으로 변화시켜 볼 것이다. 참고로 수열에서 항수는 차수가 다른 방정식과 동일하게 볼 수 있다.(더 자세한 내용은 >>점화식에서의 특성방정식(characteristic equation)<<에서 확인할 수 있다.)

  $ a_{n+2} = a_{n+1} + a_{n} \Rightarrow x^2 = x + 1 \Leftrightarrow x^2 -x -1 = 0 $와 같이 쓴뒤, $ px^2+qx+r=0 $의 일반식으로 변환시켜주면, $ p = 1, q = -1, r = -1 $이 되고, 근과 계수와의 관계에서 $ \alpha+\beta=-\frac{q}{p}=1, \; \alpha \beta = \frac{r}{p} = -1 $이다.

  이는 다시 쓰면, $ p $가 기본적으로 1이기 때문에 $ \alpha+\beta = -q, \; \alpha \beta = r $이라고 놓을 수 있다.

  그래서 일반식을 다시 근과 계수와의 관계를 이용하여 계수가 아닌 근의 형태로 표현해주면

  $ x^2-(\alpha+\beta)x+\alpha \beta = 0 $

  이를 다시 수열의 항을 통해서 표현해주면

  $ a_{n+2} = (\alpha+\beta)a_{n+1} - \alpha \beta a_n $과 같은 근을 활용한 일반식으로 확장이 되었다.

  이때, $ a_1 = 1, \; a_2 = 1, \; \alpha + \beta = 1, \; \alpha \beta = -1 $이다.

 

3. 반복되는 형태를 만들어서 계산가능하게 만들자

  과거 >>https://omnil.tistory.com/172<<포스팅에서 감마함수를 팩토리얼로 변환하는 과정과 같이 등식의 좌변과 우변이 반복되는 형태를 만들어주게 되면 계산이 되지 않을 것 같은 등식도 계산이 된다. 특히 최종단계를 우리가 직접 계산해서 값을 알 수 있다면 더더욱이 말이다. 참고로 감마함수는 n=1일때 값이 1이며, 우리는 뭔가 이런단계를 거치면 1항이 1, 2항이 1이라는 것을 통해서 값을 구할 수 있을 것이다.

  $ a_{n+2} = (\alpha+\beta)a_{n+1} - \alpha \beta a_n $

  $ a_{n+2} = \alpha a_{n+1} + \beta a_{n+1} - \alpha \beta a_n $

  $ a_{n+2}-\alpha a_{n+1} = \beta a_{n+1} - \alpha \beta a_n $

  $ a_{n+2}-\alpha a_{n+1} = \beta (a_{n+1} - \alpha a_n) $

  이렇게 변환하면 등식의 좌변과 우변의 공동되는 부분의 한 항 차이가 $ \beta $배라는 것을 알 수 있다. 바로 이것으로 우리가 아는 $ a_2 $와 $ a_1 $를 가지고 계산할 수 있는 형태로 반복계산이 가능하다.

  $ a_{n+2}-\alpha a_{n+1} = \beta (a_{n+1} - \alpha a_n) $

  $ a_{n+1}-\alpha a_{n} = \beta (a_{n} - \alpha a_{n-1}) $

  $ \Rightarrow a_{n+2}-\alpha a_{n+1} = \beta^2 (a_{n} - \alpha a_{n-1}) $

  이런식으로 $ \beta $배씩 곱해주면 우항을 a2와 a1항으로 계산할 수 있는 형태로 만들어줄 수 있다.

  이 때, $ \beta $가 몇개 생기는지는 항 수를 보고 생각하면 된다.

  우변의 맨 오른쪽항이 a2항에서 a1항으로 떨어지게 되면, $ \beta $는 한개가 생길 것이다. 즉, an항에서 a1항으로 떨어지면 (n-1)개의 $ \beta $가 생성될 것이다.

  $ a_{n+2}-\alpha a_{n+1} = \beta \cdot \beta^{n-1} \cdot (a_{2} - \alpha a_1) $

  $ a_{n+2}-\alpha a_{n+1} = \beta \cdot \beta^{n-1} \cdot (1 - \alpha \cdot 1) \leftarrow \because a_2=1,\; a_1=1 $

  $ a_{n+2}-\alpha a_{n+1} = \beta \cdot \beta^{n-1} \cdot \beta \leftarrow \because \alpha + \beta = 1 $

  $ a_{n+2}-\alpha a_{n+1} = \beta^{n+1} $

  즉  $ a_{n+2}-\alpha a_{n+1} $는 $ \beta $를 $ n+1 $번 곱한 것이니 항수 만큼 $ \beta $를 곱해주는 횟수가 된다는 것을 알 수 있다. 그렇다면 우리가 알고싶은 $ a_n $을 기준으로 하는 식으로 바꿔주면

  $ a_{n}-\alpha a_{n-1} = \beta^{n-1} \cdots (1)$

  이 되고, 이는 $ \alpha $ 변수와 $ \beta $ 변수를 바꾸어도 변수위치만 바뀐 동일한 식이 나온다.

  $ a_{n}-\beta a_{n-1} = \alpha^{n-1} \cdots (2)$

4. 연립하여 $ a_n $에 대한 일반항으로 풀어준다.

  변수 두개에 식이 두개가 나왔으니 연립방정식으로 풀 수 있다.

  (2)식에 $ \frac{\alpha}{\beta} $배를 해준 뒤 (1)-(2)식을 해줘서 $ a_{n-1} $항을 소거하여 $ a_n $의 일반항을 얻을 수 있다.

  $ a_{n}-\alpha a_{n-1} = \beta^{n-1} \cdots (1)$

  $ \frac{\alpha}{\beta}a_{n}-\alpha a_{n-1} = \frac{\alpha^{n}}{\beta} \cdots (2)$

  $ (1)-(2) $

  $ a_{n}-\frac{\alpha}{\beta}a_n = \beta^{n-1}-\frac{\alpha^n}{\beta} $

  $ \beta a_{n}-\alpha a_n = \beta^{n}-\alpha^n $

  $ (\beta -\alpha) a_n = \beta^{n}-\alpha^n $

  $ \therefore a_n = \frac{\beta^{n}-\alpha^n}{\beta -\alpha} $

  일반항 겟!!

  이제 일반항에 값만 대입해주면 진짜 n에 몇번째 항인지만 대입해주면 거기에 해당하는 값이 나오는 일반항이 된다.

5. $ \alpha $와 $ \beta $의 값 구하여 일반항에 대입하기

  여기서 $ \alpha $와 $ \beta $는 사실 $ x^2 -x -1 = 0 $의 두 근과 같기 때문에 근의 공식을 통하여 바로 값을 구할 수 있다.

  $ ax^2+bx+c = 0 $에서 두 근은 $ \frac{-b\pm \sqrt{b^2-4ac}}{2a} $식으로 구할 수 있다.
  $ \frac{1\pm \sqrt{5}}{2}, \; a=1, \: b=-1, \: c=-1 $

  $ \beta = \frac{1 + \sqrt{5}}{2}, \; \alpha = \frac{1 - \sqrt{5}}{2} $

  $ a_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n}{\frac{1+\sqrt{5}}{2}-\frac{1-\sqrt{5}}{2}} $

  $ \therefore a_n = \frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^n-\left(\frac{1-\sqrt{5}}{2}\right)^n\right) $

  이렇게 피보나치 수열의 일반항을 구했다!!

  근데, 유리수의 합으로 나타나는 피보나치 수열에서 일반항에 무리수가 들어가는 것이 신기하지 않은가!

 

피보나치 수열의 비율의 극한

이렇게 일반항을 구했으면 비율의 극한도 쉽게 구할 수 있다.

여기서는 더 큰수를 더 작은수로, 즉 $ \frac{a_{n+1}}{a_n} $의 비를 구할 것이다.

이번엔 비율을 구할 것이기 때문에, 숫자까지 들어간 일반항 보다는 문자로 표현된 더 한눈에 보기 간편한 일반항을 사용하여 극한을 구해볼 것이다.

1. 비율 식 구하기

  $ a_{n+1} = \frac{\beta^{n+1}-\alpha^{n+1}}{\beta -\alpha} $

  $ a_{n} = \frac{\beta^{n}-\alpha^{n}}{\beta -\alpha} $

  $ \frac{a_{n+1}}{a_n} = \frac{\frac{\beta^{n+1}-\alpha^{n+1}}{\beta -\alpha}}{\frac{\beta^{n}-\alpha^{n}}{\beta -\alpha}} $

  $ \frac{a_{n+1}}{a_n} = \frac{\beta^{n+1}-\alpha^{n+1}}{\beta^{n}-\alpha^{n}} $

  $ \frac{a_{n+1}}{a_n} = \frac{\beta-\alpha \left(\frac{\alpha}{\beta}\right)^n}{1-\left(\frac{\alpha}{\beta}\right)^{n}} $

2. 극한 씌워주기

  $ \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\beta-\alpha \left(\frac{\alpha}{\beta}\right)^n}{1-\left(\frac{\alpha}{\beta}\right)^{n}} $

  여기서 $ \beta = \frac{1 + \sqrt{5}}{2}, \; \alpha = \frac{1 - \sqrt{5}}{2} $이고, $ \beta $가 $ \alpha $보다 크기 때문에 $ \left(\frac{\alpha}{\beta}\right)^n $항은 $ n $이 무한대로 갈 때 값이 0으로 수렴한다.

  참고로 실제 값을 대입해서 계산해본 $ \left(\frac{\alpha}{\beta}\right) $ 값은 $ \frac{\sqrt{5}-3}{2} $이며, 그 값은 약 -0.382이다. 즉, 이 값을 무한대로 제곱할 경우 양과 음을 반복 진동하며 수렴한다.

  즉, 극한을 취한 뒤의 값은

  $ \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{\beta-\alpha 0}{1-0} $

  $ \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \beta $

  $ \therefore \beta $

  이며, 이 $ \beta $값은  $ \frac{1 + \sqrt{5}}{2} $이므로, 피보나치 수열의 비율의 극한 값은 $ \frac{1 + \sqrt{5}}{2} $이 된다.

 

  그러면 이 값은 과연 무엇일까

 

황금비

  인생을 살면서 '황금비'라는 단어를 한번은 들어본다.

  황금비는 1: 1.618로써 근사하면 5:8정도의 비율을 나타내는 것을 황금비라고 한다.

  이것은 우리가 어떤 비율을 봤을 때 가장 아름답다고 생각하는 비율이라고 하는데, 이 1.618이라는 값은

  $ \frac{1 + \sqrt{5}}{2} $을 계산하면 나오는 값이다.

  즉, 피보나치 수열의 비율을 극한으로 가져가면 황금비를 가진다는 사실!

0에서 1사이의 x^x(x의 x승) 적분 값 계산(integral from 0 to 1 x to the power x dx)

1. Gamma function(감마함수)를 통하여 gamma(n+1)=n! 증명

  https://omnil.tistory.com/172에 증명 되어 있음

2. $ e^x $의 매클로린 급수(Maclaurin series)를 구하기

  매클로린 급수의 일반항

    $ p(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n $

  $ e^x $는 모든 미분 차수에 대하여 그대로 $ e^x $이며, $ x=0 $일 때 항상 1값을 갖는다.

  따라서, $ e^x $를 매클로린 급수로 전개하면

    $ e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} $

3. $ x^x $를 변환하기

  $ \int_0^1 x^x dx $

  $ = \int_0^1 e^{x\, ln\, x} dx \leftarrow \because x $ 는 $ e^{ln\, x} $와 같으므로, $ x^x = e^{x\, ln\, x} $

  $ = \int_0^1 \sum_{n=0}^{\infty} \frac{(x\, ln\, x)^n}{n!} dx \leftarrow \because e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} $ 이므로

  $ = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{1} (x\, ln\, x)^n dx $

4. $ -ln\, x $를 $ t $로 치환하기

  $ -ln\, x = t $

  $ ln\, x = -t $

  $ x = e^{-t} $

  $ dx = -e^{-t}dt $

  $ x = 1 \rightarrow t = 0 $

  $ x = 0 \rightarrow t = \infty $

  $ \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{1} (x\, ln\, x)^n dx $

  $ = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{\infty}^{0} e^{-nt}(-t)^n(-e^{-t}) dt $

  $ = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{\infty} e^{-nt}(-t)^n(e^{-t}) dt $

  $ = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{\infty} e^{-t(n+1)}(-t)^n dt $

  $ = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_{0}^{\infty} e^{-t(n+1)}t^n dt $

5. $ t(n+1) $을 $ p $로 다시 치환해주기

  $ t(n+1) = p $

  $ t = \frac{p}{n+1} $

  $ dt = \frac{1}{n+1} dp $

  $ \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_{0}^{\infty} e^{-t(n+1)}t^n dt $

  $ = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_{0}^{\infty} e^{-p} \frac{p^n}{(n+1)^n} \frac{1}{n+1} dp $

  $ = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_{0}^{\infty} e^{-p} \frac{p^n}{(n+1)^{(n+1)}} dp $

  $ = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{1}{(n+1)^{(n+1)}} \int_{0}^{\infty} e^{-p} p^n dp $

  $ = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{1}{(n+1)^{(n+1)}} n! \leftarrow \because \int_{0}^{\infty}e^{-x}x^{n} dx = n! $

  $ = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^{(n+1)}} \leftarrow \because n!$ 약분

  $ = 1 - \frac{1}{2^2} + \frac{1}{3^3} - ... $

6. 결과

  $ \simeq 0.783431$

+ Recent posts